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ABSTRACT 
 

This paper attempts to improve the computational efficiency of the well known particle 
swarm optimization (PSO) algorithm for tackling discrete sizing optimization problems of 
steel frame structures. It is generally known that, in structural design optimization 
applications, PSO entails enormously time-consuming structural analyses to locate an 
optimum solution. Hence, in the present study it is attempted to lessen the computational 
effort of the algorithm, using the so called upper bound strategy (UBS), which is a recently 
proposed strategy for reducing the total number of structural analyses involved in the course 
of design optimization. In the UBS, the key issue is to identify those candidate solutions 
which have no chance to improve the search during the optimum design process. After 
identifying those non-improving solutions, they are directly excluded from the structural 
analysis stage, diminishing the total computational cost. The performance of the UBS 
integrated PSO algorithm (UPSO) is evaluated in discrete sizing optimization of a real scale 
steel frame to AISC-LRFD specifications. The numerical results demonstrate that the UPSO 
outperforms the original PSO algorithm in terms of the computational efficiency. 
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1. INTRODUCTION 
 
The optimum design of structural systems is an attempt to find a minimum weight or cost 
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structure with respect to a predefined set of design constraints. Basically, the optimum 
design of skeletal structures (either frame or truss structures) can be divided into three 
categories as sizing optimization, shape optimization, and topology optimization. In sizing 
optimization, cross-sectional areas of members, in shape optimization, nodal coordinates, 
and in topology optimization, presence or absence of structural members are treated as 
design variables of the problem. 

The shortcomings of traditional structural optimization techniques namely mathematical 
programming [1] and optimality criteria [2, 3] methods, such as their gradient based 
formulations as well as inefficiency in handling discrete design variables, have yield an 
increasing tendency towards non-traditional stochastic search techniques or the so-called 
metaheuristics. In general, metaheuristic techniques, such as genetic algorithms (GAs) [4, 5], 
particle swarm optimization (PSO) [6], ant colony optimization (ACO) [7, 8], etc., borrow 
their working principles from natural phenomena [9]; and follow non-deterministic search 
strategies in locating the optimum solutions. The numerous applications of metaheuristics in 
structural design optimization can be attributed to their superior results, robust 
performances, independency on gradient information, and capability of handling both 
discrete and continuous design variables. The state-of-the-art reviews of metaheuristic 
algorithms as well as their applications in structural design optimization problems are 
outlined in Refs. [10, 11]. 

Despite many advantageous features of the metaheuristics, the slow rate of convergence 
towards the optimum and the need for a high number of structural analyses are known as the 
main shortcomings of these techniques in structural design optimization applications. It is 
known that response computations of designs sampled during a search process mostly 
occupies 85-95% workload of a metaheuristic algorithm [12], and thus large number of 
structural analyses significantly increases the total computing time. One solution to this is to 
lessen the total computational time by taking advantage of high performance computing 
techniques, such as parallel or distributed computing methods. The idea behind these 
approaches is to distribute the total workload of the algorithm amongst multiprocessors of a 
single computer or within a cluster of computers connected to each other via local area 
network. In Hasançebi et al. [12] it is demonstrated through three design instances of steel 
buildings that a maximum speedup ratio between 12.2 and 16.8 can be achieved using a 
cluster computing system consisting of 32 processors. An alternative approach, which is 
more straightforward and easier to apply, is to develop efficient strategies for reducing the 
number of structural analyses required in the course of optimization. The latter, can be 
carried out by proposing improved optimization techniques capable of locating reasonable 
solutions using fewer structural analyses, i.e. less computational cost. In this regard, an 
upper bound strategy (UBS) is recently proposed in Kazemzadeh Azad et al. [13], where 
unnecessary structural analyses are avoided during the course of optimization based on a 
simple and efficient mechanism. The main concern in the UBS is to detect those candidate 
designs which have no chance to improve the search during the iterations of the design 
optimization. After identifying the non-improving candidate designs, they are directly 
excluded from the structural analysis stage, resulting in diminishing the total computational 
effort.  

The PSO algorithm proposed by Kennedy and Eberhart [6] simulates the social behavior 
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of animals such as fish schooling and bird flocking. Due to its efficiency and simplicity, it 
has become one of the most popular metaheuristics of the recent years especially in the field 
of structural desing optimization [14-19]. Fourie and Groenwold [14] applied the PSO 
algorithm to the structural design optimization problems with sizing and shape variables. 
Perez and Behdinan [15] investigated the PSO algorithm through optimal design of four 
classical truss optimization instances. Li et al. [16, 17] proposed improved variants of the 
method as heuristic PSO algorithms for optimum design of truss structures. Further, Kaveh 
and Talatahari [18] developed a hybrid version of the PSO algorithm for discrete sizing 
optimization of truss structures and demonstrated its promising performance. Recently, 
Gomes [19] employed the PSO algorithm for sizing and shape optimization of truss 
structures with frequency constraints.  

Regarding the wide application of the PSO algorithm in tackling real world instances, 
improving its computational efficiency in structural design optimization problems is 
attempted in the present study. Here, the number of structural analyses needed for the design 
optimization process of the PSO algorithm is diminished using the recently proposed UBS 
[13]. In the UBS, unnecessary structural analyses are avoided during the course of 
optimization using a simple and efficient mechanism. The key issue is to identify those 
candidate solutions which have no chance to improve the search during the optimum design 
process. After identifying those non-improving solutions, they are directly excluded from 
the structural analysis stage, diminishing the total computational cost. The performances of 
the UBS integrated PSO algorithm (UPSO) is investigated in design optimization of a steel 
frame structures according to AISC-LRFD [20] specifications; and the numerical results are 
discussed in detail. The remaining sections of the paper are organized as follows. The 
second section describes the considered discrete sizing optimization problem. The third 
section outlines the PSO algorithm and related formulations. In the fourth section the UBS 
integrated PSO algorithm is described in details. The computational efficiency of the UPSO 
algorithm is investigated in the fifth section. A brief conclusion of the study is provided in 
the last section. 
 
 

2. DISCRETE SIZING OPTIMIZATION PROBLEM 
 
In industrial applications the frame members are typically adopted from a set of available 
steel sections which yields a discrete sizing optimization problem. For a steel frame 
composed of mN  members grouped into dN  design groups, the optimum design problem 

can be stated as follows. The objective is to find a vector of integer values I  (Eq. 1) 
representing the sequence numbers of steel sections assigned to dN  member groups 

 

  
dN

T III ,...,, 21I  (1) 

 
to minimize the weight, ,W  of the structure 
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where iA  and i  are the length and unit weight of the steel section selected for member group 

i, respectively, tN  is the total number of members in group i, and jL  is the length of the 

member j which belongs to group i. Here, the objective of finding the minimum weight structure 
is subjected to design constraints, including strength and serviceability requirements, imposed 
according to AISC-LRFD [20] code. 
 
 

3. THE PSO ALGORITHM 
 
The PSO algorithm is developed considering the memory of each particle (candidate 
solution) as well as the knowledge attained by the swarm of particles [6, 21]. The main steps 
of the PSO algorithm are outlined in the following subsections [14, 15, and 22]. 
 
3.1. Initializing Particles 

A swarm is composed of a certain number of particles. Each particle (P) represents a 
candidate solution to an optimization problem at hand, and incorporates two sets of 
components; a position (design) vector I (Eq. (1)) and a velocity vector v (Eq. (3)). The 
position vector I retains the values (positions) of design variables, while the velocity vector 
v is employed to vary these positions during the search. Each particle in the swarm is 
generated through a random initialization. 
 

 ),,( vIP          
mNvvvv ,...,, 21  (3) 

 
3.2. Evaluating Particles 

All the particles are analyzed, and their objective function values are calculated are 
computed according to Eq. (4) [22]. 
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In Eq. (4), f  is the constrained objective function value, ic  is i-th problem constraint 

violation and p  is the penalty coefficient used to tune the intensity of penalization as a 
whole. This parameter is generally set to an appropriate static value of unity [22].  
 
3.3. Updating the Particles’ Bests and the Global Best 

In the PSO, a particle’s best position (the best design with the minimum objective function 
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value) so far is referred to as particle’s best and is stored in a vector B for each particle. On 
the other hand, the best position located by any particle since the beginning of the process is 
called the global best position, and it is stored in vector G. At a current iteration k, both the 
particles’ bests and the global best are updated (Eq. (5)). 
 

  )()()()( ,...,,...,
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3.4. Updating Particles’ Velocity Vectors 

The velocity vector of each particle is updated based on the particle’s current and best 
positions as well as the global best position, as follows: 
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In Eq. (6), r1 and r2 are random numbers generated between 0 and 1, w is the inertia of 

the particle which controls the exploration properties of the algorithm, c1 and c2 are the trust 
parameters that indicate how much confidence the particle has in itself  and in the swarm, 
respectively. A reformulation of Eq. (6) is put forward in [22] where an additional velocity 
term is added to give each particle a random move in certain directions in the close 
neighborhood of its current position. The reformulation used in Ref. [22] is implemented 
here with a slight modification where the additional velocity term is adopted with a 
probability of 0.01 for both positive and negative changes in the velocities of particles. 
 
3.5. Updating Particles’ Position Vectors 

Next, the position vector of each particle is updated with the updated velocity vector (Eq. 
(7)). 
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3.6. Termination 

The abovementioned steps 3.2 through 3.5 are repeated iteratively for a predefined number 
of iterations. 
 
 

4. INTEGRATION OF THE UBS WITH PSO 
 
The large number of structural analyses involved in the design optimization process of the 
PSO is convinced as a main shortcoming while tackling structural design optimization 
problems. In this regard, in this study, the recently proposed UBS [13] is integrated with the 
PSO algorithm to diminish the total computational cost of the technique. In the UBS, 
unnecessary structural analyses are avoided during the course of optimization using a 
simple, yet, efficient mechanism. The main concern is to identify those candidate solutions 
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which have no chance to improve the search during the course of optimum design. After 
identifying those non-improving solutions, they are directly excluded from the structural 
analysis stage, diminishing the total computational effort.  

Typically, considering the UBS, the penalized weight of a current solution (particle) can 
be considered as the upper bound limit for the net weight of a newly generated candidate 
solution. Accordingly, a new candidate solution with a net weight greater than this limit can 
be excluded from the structural analysis stage. This strategy is used in the UPSO algorithm 
as follows. Here, after a new particle Pi

� is generated, first the net weight of newly 
generated particle i.e. W(Pi

�) is calculated only; not the penalized weight. This computation 
is straightforward and can be accomplished through a trivial computational effort. If Pi

� has 
a net weight smaller than or equal to the penalized weight of the current particle’s best f(Gi), 
the structural analysis of the sampled particle is processed and its penalized weight is 
computed. In the opposite case, i.e. f(Gi)< W(Pi

�), however, the upper bound rule is 
activated and Pi

� is automatically excluded from the structural analysis stage, since such a 
candidate solution is unlikely to improve the current particle’s best vector. 

It is worth mentioning that the UBS is originally proposed in Ref. [13] as a strategy to be 
used in conjunction with all metaheuristic techniques that employ a µ+λ selection scheme 
[23] in their algorithmic models. However, in the present study it is shown that the UBS can 
be efficiently used in conjunction with other search schemes such as the one involved in the 
PSO algorithm as well. It should be noticed that the UBS does not affect exploration and 
exploitation characteristics of the PSO algorithm; however, as demonstrated in the following 
section, using this strategy, it is possible to perform a computationally more efficient design 
optimization. 
 
 

5. NUMERICAL EXAMPLE 
 
This section covers performance evaluation of the UBS integrated PSO algorithm i.e. UPSO 
through design optimization of a 135-member steel frame under 10 load combinations. Here, 
the maximum number of iterations is taken as the termination criterion of optimization 
process. The parameters’ values of Eq. (6) are taken as: w = 0.5, c1 = c2 = 1.5 as given in 
Ref. [22]. Here, the wide-flange (W) profile list composed of 268 ready sections is used to 
size the structural members. The material properties of steel are taken as follows: modulus 
of elasticity (E)  200 GPa, yield stress (Fy)  248.2 Mpa, and unit weight of the steel (ρ)  
7.85 ton/m3.   

It should be underlined that an improvement of the PSO algorithm in terms of quality of 
the optimum solutions is not intended in this study. Instead, the aim of the study is to 
accelerate computational efficiency of the PSO by reducing the computing time through a 
smaller number of structural analyses.  

 
135-member steel frame 

The 3-story steel frame [13] shown in Figure 1 is chosen as the design optimization 
example. The frame is composed of 135 members including 66 beam, 45 column and 24 
bracing elements. The stability of structure is provided through moment resisting 
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connections as well as inverted V-type bracing systems along the x direction. Here, the 135 
members of the frame are collected under 10 member groups. As shown in Figure 2, the 
columns are grouped into four sizing variables in a plan level as corner, inner, side x-z and 
side y-z columns, and they are assumed to have the same cross-section over the three stories 
of the frame. On the other hand, all the beams in each story are grouped into one sizing 
variable, resulting in three beam-sizing design variables for the frame. Similarly, all the 
bracings in each story are grouped into one sizing variable, resulting in three bracing-sizing 
design variables for the frame.  
 

(a) 

(b)

 

(b) (c)



S. Kazemzadeh Azad and O. Hasançebi 

 

570 570 

 
(e) 

Figure 1. 135-member steel frame, (a) 3-D view (b) side view of frames 1 and 3 (c) side view of  
frame 2 (d) side view of frames A, B, C, D,  and E (e) plan view 

 

 
Figure 2. Columns grouping of 135-member steel frame in plan level 

 
For design purpose, the frame is subjected to the following 10 load combinations ASCE 

7-98 [24]: 
(1) 1.4D 
(2) 1.2D + 1.6L 
(3) 1.2D + 1.0Ex + 0.5L 
(4) 1.2D + 1.0Eex + 0.5L 
(5) 1.2D + 1.0Ey + 0.5L 
(6) 1.2D + 1.0Eey + 0.5L 
(7) 0.9D + 1.0Ex 

(8) 0.9D + 1.0Eex 

(9) 0.9D + 1.0Ey 

(10) 0.9D + 1.0Eey 

where D and L denote the dead and live loads, respectively; Ex and Ey are the earthquake 
loads applied to the center of mass in x and y directions, respectively; Eex and Eey are the 
earthquake loads applied considering the effect of accidental eccentricity of the center of 
mass in x and y directions, respectively. Based on ASCE 7-98 [24] the amount of 
eccentricity is set to 5% of the dimension of the structure perpendicular to the direction of 
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the applied earthquake load. 
The live loads acting on the floor and roof beams are 12 and 7 kN/m, respectively.  In the 

case of dead loads, besides the uniformly distributed loads of 20 and 15 kN/m applied on 
floor and roof beams, respectively, the self-weight of the structure is also considered.  

The earthquake loads, are calculated based on the equivalent lateral force procedure 
outlined in ASCE 7-98 [24]. Here, the resulting seismic base shear (V) is taken as V = 
0.15Ws where Ws is the total dead load of the building. The computed base shear is 
distributed to each floor based on the following equation: 
 

 





n

i

k
ii

k
xx

x

hw

Vhw
F

1

 (8) 

 
where xF  is the induced lateral seismic force at level x; w is portion of the total gravity load 

assigned to the related level (i.e. level i or x); and h is the height from base to the related 
level. Here, k is determined based on the structure period. It is equal to 1 for structures with 
a period of 0.5 sec or less; and 2 for structures with a period of 2.5 sec or more.  For 
structures with a period in range of 0.5 to 2.5 sec, k is calculated through linear interpolation 
[24]. It is worth mentioning that the period of the structure is calculated using the following 
equation given in ASCE 7-98  [24]. 
 

 
4/3

nT hCT   (9) 
 
where CT is taken as 0.0853 and hn is the height of the building; namely 12 m for this 
example. Hence, the period of the structure, T, is 0.55 sec. Based on the obtained period the 
value of parameter k in Eq. (8) is taken as 1.025 for this example. It should be noticed that 
since the self-weight of the structure changes during the course of optimization, apparently, 
the values of dead and earthquake loads change accordingly. 

The beam elements are continuously braced along their lengths by the floor system; and 
columns and bracings are assumed to be unbraced along their lengths. The effective length 
factor, K, is taken as 1 for all beams and bracings. The K factor is conservatively taken as 
1.0 for buckling of columns about their minor (weak) direction, since the frame is assumed 
to be non-swaying in that direction owing to inverted V-type bracing systems. However, for 
buckling of columns about their major direction the K factor is calculated as described in 
Ref. [13]. 

The maximum lateral displacement of the top story is limited to 0.03 m and the upper 
limit of interstory drift is taken as h/400, where h is the story height. The interstory drifts are 
calculated based on the displacement of center of mass of each story. The maximum lateral 
displacement of the top story is calculated with respect to the maximum displacements of the 
ends of the structure. Here, horizontal displacements of all joints of each story are 
constrained to each other based on a rigid diaphragm assumption. 

Since the PSO and UPSO algorithms use the same formulation for the search procedure, 
the optimum designs reported for the UPSO algorithm are valid for the PSO algorithm as 
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well. However, the number of structural analyses to reach the optimum design will be 
different as a result of the employed UBS in the former. Here, the number of structural 
analyses performed in the UPSO algorithm is calculated by counting candidate solutions that 
undergo structural analysis. For the original PSO algorithm this can be simply attained 
through multiplying the total number of iterations by the population size. It should be noted 
that comparing the performances of the employed algorithms is not the aim of this study. 
The main concern is to demonstrate the effect of UBS on performance of the PSO algorithm. 
Optimum desing of the frame is performed and the obtained results are tabulated in Table 1. 
The optimization history of the structure is shown in Figure 3, which shows the variation of 
the penalized weight of the current best design obtained so far in the search process. 
 

Table 1: Optimum designs obtained for 135-member steel frame 

Groups UPSO 
CG1* W8×28 
CG2 W33×118 
CG3 W40×167
CG4 W14×53
B1* W14×30 
B2 W24×55 
B3 W16×26 
BR1* W14×30
BR2 W40×149 
BR3 W27×84 
Weight (ton) 55.66 
No. candidate designs generated 17500
No. Structural Analyses performed 1574

*CG denotes column group with respect to Figure 2, B: beams, BR: bracings 
 

 
Figure 3: Optimization history of 135-member steel frame 
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Bearing in mind that a population size of 50 particles is employed over a maximum 
number of 350 iterations, the number of structural analyses performed by the PSO algorithm 
is equal to 17500. However, as tabulated in Table 1, when the UPSO algorithm is employed, 
it is found that indeed 1574 structural analyses are required in the optimization process. This 
implies that the number of saved structural analyses using the UPSO algorithm is 15926 
analyses for the considered sizing optimization instance. 

The numerical results attained indicate the usefulness of the UBS in reducing the total 
computational effort of the PSO algorithm. The enhanced computational efficiency through 
the UPSO algorithm can lessen the burden of those structural engineers who prefer to utilize 
advantageous features of the PSO algorithm in their practical design optimization 
applications. 
 
 

6. CONCLUSIONS 
 
The computational efficiency of the well known PSO algorithm is enhanced for tackling 
discrete sizing optimization applications. The total number of required structural analyses is 
diminished using the upper bound strategy (UBS), which is a recently proposed strategy for 
reducing the computational effort involved in the design optimization process. Based on the 
UBS, unnecessary structural analyses are avoided during the course of optimization using a 
simple and efficient mechanism. The main concern in the UBS integrated PSO algorithm i.e. 
UPSO is to identify those candidate solutions which have no chance to improve the search 
during the optimum design process. After identifying those non-improving solutions, they 
are directly excluded from the structural analysis stage, diminishing the total computational 
cost. The performance of the UPSO algorithm is investigated in discrete sizing optimization 
of a steel frame structure according to AISC-LRFD specifications. The obtained numerical 
results clearly indicate that the developed UPSO algorithm is computationally more efficient 
than the original PSO algorithm. 
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