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ABSTRACT 
 

This paper, we presents a new primary-secondary-criteria scheduling model for resource-
constrained project scheduling problem (RCPSP) with uncertain activity durations (UD) and 
cash flows (UC). The RCPSP-UD-UC approach producing a “robust” resource-feasible 
schedule immunized against uncertainties in the activity durations and which is on the 
sampling-based scenarios may be evaluated from a cost-oriented point of view. In the 
presented approach, it is assumed that each activity-duration and each cash flow value is an 
uncertain-but-bounded parameter, which is characterized by its optimistic and pessimistic 
estimations. The evaluation of a given robust schedule is based on the investigation of 
variability of the makespan as a primary and the net present value (NPV) as secondary 
criterion on the set of randomly generated scenarios given by a sampling-on-sampling-like 
process. Theoretically, the robust schedule-searching algorithm is formulated as a mixed 
integer linear programming problem, which is combined with a cost-oriented sampling-
based approximation phase. In order to illustrate the essence of the proposed approach we 
present detailed computational results for a larger and very challenging project instance. A 
problem specific fast and efficient harmony search algorithm for large uncertain problems 
will be presented in a forthcoming paper. 
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1. INTRODUCTION 
 
 

Traditionally, project schedule uncertainty has been addressed by considering the 
uncertainty related to activity duration. In general, there are two approaches to dealing with 
uncertainty in a scheduling environment (Herroelen and Leus [1], and Van de Vonder et al 
[2]) proactive and reactive scheduling. Proactive scheduling constructs a predictive schedule 
that accounts for statistical knowledge of uncertainty. The consideration of uncertainty 
information is used to make the predictive schedule more robust, i.e., insensitive to 
disruptions. Reactive scheduling involves revising or re-optimizing a schedule when an 
unexpected event occurs. At one extreme, reactive scheduling may not be based on a 
predictive schedule at all: allocation and scheduling decisions take place dynamically in 
order to account for disruptions as they occur. A less extreme approach is to reschedule 
when schedule breakage occurs, either by completely regenerating a new schedule or by 
repairing an existing predictive schedule to take into account the current state of the system. 

According to the author’s opinion, from managerial point of view the “rescheduling of 
rescheduling” like reactive process, as a problem solving conception, is far from the reality. 
To avoid the unavoidable combinatorial explosion of scenario-oriented approaches, we have 
to rethink everything from the beginning. In other words, we have to go back to the 
proactive schedule, and have to immunize against the possible disruptions. In this paper, we 
present a new idea about the robustness combining with a cost-oriented uncertainty 
investigation. The result of the new approach is a makespan minimal robust proactive 
schedule, which is immune against the uncertainties in the activity durations and which can 
be evaluated from a cost-oriented point of view on the set of the uncertain-but-bounded 
duration and cost parameters using a sampling-based approximation. 
 
 

2. PROBLEM FORMULATION 
 
In this section, we present a new approach for resource-constrained projects with uncertain 
activity durations and cash flow values (RCPSP-UD-UC). The approach can be used in the 
project-planning phase to seek answers to the various types of “what if …” questions, 
therefore, without loss of generality, in this paper, we assume that the resource requirements 
of the activities, the resource availabilities and the cash-flow-oriented interest rate are 
known crisp values according to a worst-case (pessimistic) scenario. We have to mentioned, 
that in the real-word project scheduling problems, the "optimal" performance obtained using 
conventional deterministic methods can be dramatically degraded in the presence of sources 
of uncertainty. In this paper, we assume that the only sources of uncertainty are the 
variability of the activity durations and the cash flow values. The approach produces 
“robust” schedules, which are immunized against uncertainties in the activity durations. The 
primary optimality criterion is defined as a linear combination (weighted sum) of the 



ROBUST RESOURCE-CONSTRAINED PROJECT SCHEDULING WITH... 

 

529

optimistic and pessimistic resource-feasible makespan. In the presented approach, each 
activity-duration is uncertain-but-bounded parameter, which can be generated from a 
uniform distribution. Naturally, this simple description of the future can be replaces by a 
more sophisticated probabilistic or possibilistic imagination. According to our experiences, 
the presented optimization model is not so sensitive (practically invariant) to the real 
meaning of the uncertain-but-bounded parameters, which probably may be the result of the 
"robust nature" of the Central Limit Theorem (CLT). 

Theoretically, the optimal robust schedule searching process can formulated as a multi-
objective mixed integer linear programming problem (MOMILP), which generate the 
Pareto-front as a result. In this paper, we replaced the MOMILP with a MILP by 
scalarization, defining the primary optimality criterion as a sum of the optimistic and 
pessimistic makespan. Naturally, the weights of the linear combination have a very 
important meaning from managerial point of view, because these are able to express the 
personal preferences of a project manager according to his/her risk taking (avoiding) habit. 
The resulting MILP can be solved directly in the case of small-scale projects within 
reasonable time. The proposed model is based on the so-called “forbidden set” concept. The 
output of the model is the set of the optimal conflict repairing relations. Therefore, after 
inserting the conflict-repairing relations, we get a robust schedule, which is invariant to the 
uncertain activity durations and the activity movements bounded by the slacks. 

We have to mention it, that the result of the MILP formulation is only one makespan 
minimal robust schedule, which not necessarily will be cost-effective in the defined 
uncertain environment. The reason is simple: According to the uncertain cash flow values, 
we have to investigate the uncertain cost-oriented secondary criterion (namely, the 
variability of NPV values) for all possible uncertain activity duration combinations in the 
best-worst project duration range. Naturally, the combinatorial explosion (the huge number 
of alternative scenarios with variable cash-flow values) prevents the exact investigation. 
Therefore, only one way remains to manage the problem, which means a sampling-based 
approximation of the cost-oriented schedule characteristics on a sampling-based 
approximation of the duration-oriented schedule characteristics. When we generate only one 
makespan-minimal robust schedule, which is invariant to the uncertain activity durations and 
generate a random scenario set which is large enough to approximate the worst-best NPV 
values then we know nothing about the competitive alternative solutions. Therefore, we 
have to generate alternative schedules using different resource-conflict repairing 
mechanisms; and in the approximated best-worst range, we have to approximate the worst-
best NPV values to select an acceptable (not necessarily optimal) solution. In other words, 
without an appropriate heuristic, which is able to generate alternative robust solutions within 
reasonable time, we are unable to manage the problem. 

In order to model uncertain activity durations in projects, we consider the following 
resource constrained project-scheduling problem: A single project consists of N  real 
activities. Each activity-duration iD ,  N2,..., 1, i  is a discrete (positive) random variable: 

 
  iiii B1,...,A ,AD    (1) 

where iA  and iB  are the optimistic and pessimistic estimations of iD , respectively. 
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The activities are interrelated by precedence constraints: Precedence constraints - as 
known from traditional CPM-analysis - force an activity not to be started before all its 
predecessors are finished. These are given by network relations ji  , where ji   means 
that activity j  cannot start before activity i  is completed. Furthermore, activity 

 10  Ni i  is defined to be the unique dummy source (sink). Let  1N,...,1 i ,IPi   

denote the set of immediate predecessors for activity i  and let NR  be the set of the network 
relations. 

Let R denote the number of renewable resources required for carrying out the project. 
Each resource  Rr ,...,1  has a constant per period availability rR . In order to be 

processed, each real activity  N...,2, 1, i  requires 0i rR  units of resource  R  ,... ,1r  

over its duration. 
Let     1N,...,1j ,N,...,1i  j,i   ji PS   denote the set of predecessor-

successor relations. A schedule is network-feasible if satisfies the predecessor-successor 
relations: 
 
 jii SDS  , if PSji   (2) 

 
Let   denote the set of network-feasible schedules. For a network feasible schedule 

S , let    TDStSi iii ,...,1 t   A t  , denote the set of active (working) 

activities in period t  and let 
 
 




tAi

r ir t rU ,  T,...,1t  ,  R,...,1r   (3) 

 
be the amount of resource r  used in period t . 

A network-feasible schedule S  is resource-feasible if satisfies the resource 
constraints: 
 
 rr t RU  ,  T,...,1t  ,  R,...,1r   (4) 

 

Let   denote the set of resource-feasible schedules. 
As we mentioned, the MILP formulation is based on the forbidden (resource constraint 

violating) set concept. A forbidden activity set is identified such that: (1) all activities in the 
set may be executed concurrently, (2) the usage of some resource by these activities exceeds 
the resource availability, and (3) the set does not contain another forbidden set as a proper 
subset. (see for example, Bell and Park [3]). A resource conflict can be repaired explicitly by 
inserting a network feasible precedence relation between two forbidden set members, which 
will guarantee that not all members of the forbidden set can be executed concurrently. We 
note, that an inserted explicit conflict repairing relation (as its side effect) may be able to 
repair one or more other conflicts implicitly, at the same time. Let F denote the number of 
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forbidden sets. Let fRR  denote the set of explicit repairing relations for forbidden set fF , 

 F,...,2,1f  . Let  








 
f

f F,...,2,1fRRRR  denote the set of all the possible 

repairing relations. In the forbidden set oriented model (see Alvarez-Valdés and Tamarit 
[5]); a resource-feasible schedule is represented by the set of the inserted conflict repairing 
relations IR . According to the implicit resource constraint handling, in this model the 
resource-feasibility is not affected by the feasible activity shifts (movements). In the time 
oriented model (see Pritsker, Waters, and Wolfe [5]); a resource-feasible schedule is 
represented by the activity starting times. In this model, according to the explicit resource 
constraint handling, an activity movement may be able to destroy the resource-feasibility. 

Let A  and B  denote the optimistic and pessimistic makespan of a resource-feasible 

schedule set, respectively. Let   B ,A  denote the set of project’s makespan in the optimal 

resource-feasible schedule set. Let T  denote an upper bound of the optimal project's 

makespan in the pessimistic case ( TB  ). Let 


N

i iBT
1

, which is an “extremely 

weak” upper bound on the project’s makespan B , and fix the position of the unique 
dummy sink in period 1T . Naturally, this “weak” upper bound can be replaced by any 
“stronger” one. In our notation, the time periods are labeled by consecutive 

 1T,...,1 ,0 t   integers. Note the convention of starting an activity at the beginning of a 

time period and finishing it at the end of it. According to the applied convention, time period 
one is the first working period. 

Let iS , iii SSS   denote the start time of activity i  for  ,...,N1i , where  ii SS    

denotes the earliest (latest) starting time of activity i . Because preemption is not allowed, 
the ordered set  N,..., SS1S  defines a schedule for the project. Naturally, the latest 

starting times are varying in the function of T . 
Let  N1 D ,...,DD  , where  iii B ,AD  , iD  is integral, for  N...,2, 1, i , the 

ordered set of the activity durations. By definition, a resource-feasible schedule set remains 
resource-feasible: (1) for each  N1 D ,...,DD   combination of the feasible activity 

durations:  iii BAD , , iD  is integral,  Ni ...,2, 1,  ; (2) for each  NSSSS ,...,, 21  

combination of the feasible activity starting times (activity movements): 
    iii DSDSS , , iS  is integral and   N,...,2,1i DD i  . 

 
 

3. MODEL DESCRIPTION 
 
In this section, we describe a robust scheduling model for the resource-constrained project-
scheduling problem with uncertain-but-bounded activity durations. In the presented mixed 
integer linear programming (MILP) model the total number of zero-one variables is   RR , 

and the formulation is based on the well-known "big-M" constraints.  
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Let ii SBSA   ,  denote the starting time of activity i ,  1    2 1 0  Ni ,...,,,  in the 

optimistic and pessimistic resource constrained schedules, respectively. By definition, in the 
optimistic and pessimistic schedules the activity durations are ii BA  and  for each 

 Ni     2 1 ,...,, , respectively.  

The model gives a robust “makespan minimal” resource constrained schedule, which is 
not effected by the uncertain activity durations. Here “makespan minimal” means a schedule 
for which a given linear combination of the optimistic and pessimistic resource constrained 
makespans is minimal. Naturally, the optimal solution will be a function of the weighting 
coefficients. 

Defining the decision variables: 
 

 RRj i
j i

Yi j 


 

   where,   
otherwise0

inserted   if1
, (5) 

 
the following MILP model arises: 
 
  min    1N1N SBWBSAWA , (6) 

 
subject to 
 
  ,1Y

f RR  ji
i j 


  F,...,1 f   (7) 

 

    i jijijii YASASASAASA  1   , RRji   (8) 

 

    i jijijii YBSBSBSBBSB  1    , RRji   (9) 

 
 jii SAASA  , NRji  , (10) 

 
 jii SBBSB  , NRji  , (11) 

 
 1  1  TSBN , (12) 

 
   1 0 ,i jY , RRji  . (13) 

 
The objective function (6) minimizes the linear combination of the optimistic, most 

likely, and pessimistic resource constrained makespans. Constraint set (7) assures the 
resource feasibility (we have to repair each resource conflict explicitly or implicitly, 
therefore from each conflict repairing set we have to choose at least one element). Constraint 
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sets (8-9) take into consideration the precedence relations between activities in the function 
of the inserted repairing relations. Constraint sets (10-11) take into consideration the original 
precedence (network) relations between activities. Finally, constraint (12-13) specifies an 
upper bound for the pessimistic project makespan. 

Naturally, the optimal solution is a function of the  WBWA   ,  coefficients. According to 
the model construction in the optimal schedule every possible activity movement is resource 
feasible, and schedule is “robust” because it is invariant to the activity durations in the 
 ii BA ,  interval. In other words, a non-critical activity movement (a non-critical delay) or a 

longer (but possible) activity duration is unable to destroy the resource feasibility of the 
schedule. 

The presented MILP model is a modified and simplified version of the original forbidden 
set oriented model developed by Alvarez-Valdés and Tamarit [4]. The reason of the 
modification is simple: in our model the activity durations are uncertain-but-bounded 
variables. The possibility of the simplification follows from a simple lemma (see Figure 1).  

LEMMA: The optimal solution  RRjiYYY jiji   1    ,  is acyclic. 

PROOF: In order to prove the lemma, suppose that there is at least one cycle in the 
optimal solution (as is shown by Figure 4). In this case, there is an arc (path) from i  to j  
( ji  ) and an other arc (path) from j  to i  ( ij  ). According to the inserted 

repairing relations, jii SDS   and ijj SDS  . From the premise it follows, that 

ijjjii SDSSDS  . Therefore, iD  will be zero. This contradicts that 0iD . ♦ 

 

i  j



 
Figure 1. Demonstration of the acyclic nature of the conflict-repairing process 

 
According to the above lemma, we can omit from the original model the following explicit 
constraints served to eliminate cycles: 
 
 10    ijji YY , RRji  , RRij   (14) 

 
 1    kjjiki YYY , RRki  , RRji  , RRkj   (15) 

 
Naturally, the original explicit cycle eliminating constraint set may be useful in the 

relaxed linear programming (LP) problem solving process ( when we applied it as a core 
element of a hybrid heuristic), in spite of the fact that, according to the former experiences 
Csébfalvi [6], Csébfalvi and Láng [7], Csébfalvi and Csébfalvi [8], Csébfalvi and Szendrői 
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[9], its constraining power is not so high. 
The core element of the sampling-based cost-oriented schedule evaluation is a MILP 

problem, in which we try to maximize the NPV fixing the activity durations and the cash-
flow values according to the generated random numbers. Generally, the solution of a MILP 
problem is a costly operation.  

When the MILP problem is a core element of a simulation process, the total time 
requirement of the MILP problem solutions may be a critical factor of the simulation, which 
may degrade the quality of the sample-based approximation.  

Fortunatelly, according to the applied implicit resource-constraint handling, the constraint 
set of the MILP contains only precedence constraints, which consist of the original 
predecessor-successor relations and the inserted resource-conflict repairing relations. 

Replacing the standard precedence constraints: 
 
 jii SDS  , RRNRji  , (16) 

 
with a totally unimodular (TU) formulation, the resource-constrain-free net present value 
problem (NPVP) can be solved in polynomial time as a LP problem (see Pritsker et al. [5]): 
 

 

 









  NPVXCNPV

N

i Tt
itit

i1

 max , (17) 

 

 1
1

 




ii

p

i

i

DT

Xq
jq

X

Tp
ip XX ,  iiii XXXT ,,, 1 , RRPSji  , (18) 

 
 11  TX N , (19) 

 
 




iTt

itX 1 ,  N,...,2,1i   , (20) 

 

  1 iDt
iit eCC  ,  N,...,2,1i   , iTt  , (21) 

 
   1 0 ,itX , iTt  ,  N,...,2,1i   . (22) 

 
Objective (17) maximizes the discounted value of all cash flows that occur during the life of 

the project. Note that early schedules do not necessarily maximize the NPV of cash flows. 
Constraints (18) represent the "strong" precedence relations. In constraint (19) the resource-
constrained project's makespan T  can be replaced by its estimated upper bound. Constraints 
(20) ensure that each activity i ,  N,...,2,1i    has exactly one starting time within its time 

window  iiii XXXT ,,, 1  where iX  ( iX ) is the early (late) starting time for activity i  

according to the precedence constraints and the latest project completion time T . Constraint set 
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(21) describes for each activity the change of the cash flow in the function of the completion 
time. The binary decision variable set (22) specifies the possible starting times for each activity. 
Using a fast interior-point-solver [11-13] the modified LP problem can be solved nearly 100 
times faster then with a traditional simplex solver. 
 
 

4. COMPUTATIONAL EXPERIMENTS 
 
The algorithm of the proposed model has been programmed in Compaq Visual Fortran 
Version 6.5. The algorithm, as a DLL, was built into the ProMan system (Visual Basic 
Version 6.0) developed by Ghobadian and Csébfalvi [12], . To solve the MILP problem a 
fast state-of-the-art solver, namely the CPLEX 12.0 in AIMMS 3.10 for Windows 
environment was used. The solver, as an AIMMS COM object, was integrated into ProMan. 
The computational results were obtained by running ProMan on a 1.8 GHz Pentium IV IBM 
PC with 256 MB of memory under Microsoft Windows XP operation system. At the 
running of the resource-constrained project borrowed from Golenko-Ginzburg and Gonik 
[13] we changed the default optimality tolerance parameters (Relative Gap =0.01 % and 
Absolute Gap = 5 period) and the Time Limit parameter (10 hours). In the presented 
example, the    1,1WB,WA     weight set was used. 

In this section, as a motivating example, we consider a larger resource constrained project 
with 36 real activities presented by Golenko-Ginzburg and Gonik [13]. In contrast to the 
instances of the well-known and popular PSPLIB (Kolisch and Schpreher [14]), this instance 
already includes information of random activity durations, that is, for each activity i  the 
optimistic and pessimistic duration time  ii BA , ,  36,...,2,1i       is given.  

In this problem, there is only one resource type and 50  units are available from this type 
in each period. In this study, we assumed that each activity duration is an "uncertain-but-
bounded" parameter without any possibilistic or probabilistic interpretation. 

The instance contains 3730F  forbidden sets, which means that the problem is 
challenging one from methodological point of view. The unfeasible early start schedule of 
the project in activity-on-node representation mode with theoretically correct resource-
profile visualization Csébfalvi [15] is presented in figures 2 and 3. In these figures the 
random part of each activity-duration is represented by a light gray bar. The predecessor-
successor relations as represented by lines. The unconstrained optimistic (pessimistic) 
makespan is  265 173  time units, respectively. The initial data of the project are given in 
tables 1 and 2. This instance is a really hard RCPSP for the applied state-of-the-art CPLEX 
12.0 solver. For each real activity, according to the usual managerial assumptions, the 
randomly generated uncertain-but-bounded cash flow values are presented in tables 3 and 4. 

Using the CPLEX 12.0 solver with the mentioned setting, the solving process was 
terminated prematurely as a result of reaching the extremely large 10 hours time limit. 

Therefore, the given final solution    500,340B,A     is only a good one. The 

possibilistic range of the makespan    465 , 395B,A   and the net present value 

    2111 , 1579NPV,NPV    were estimated by simulation. 
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The pseudo-code of the cash flow generation process is the following (INT2000 random 
number generator calls RAND2000 (Microsoft Q86523) random number generator to 
generate integer random numbers from a given interval): 

 

For A = 1 To RealActivities 

 Do 

  CashFlow_M(A) = INT2000(-500, 1000) 

 Loop While Abs(CashFlow_M(A)) < 100 

 If CashFlow(A) > 0 Then 

  CashFlow_A(A) = CInt(CashFlow_M(A) - 0.15 * CashFlow_M(A)) 

  CashFlow_B(A) = CInt(CashFlow_M(A) + 0.05 * CashFlow_M(A)) 

 Else 

  CashFlow_A(A) = CInt(CashFlow_M(A) + 0.15 * CashFlow_M(A)) 

  CashFlow_B(A) = CInt(CashFlow_M(A) - 0.05 * CashFlow_M(A)) 

 End If 

Next A 

 

 
Table 1: The initial data of the Golenko-Ginzburg and Gonik project 

a Aa Ba Ria IPa 

0 0 0 0   
1 16 60 16 {0} 
2 15 70 15 {0} 
3 18 35 18 {0} 
4 19 45 19 {0} 
5 10 33 10 {0} 
6 18 15 18 {1} 
7 24 50 24 {1} 
8 25 18 25 {6} 
9 16 24 16 {6} 
10 19 38 19 {2} 
11 20 22 20 {2} 
12 18 32 18 {3} 
13 15 45 15 {4} 
14 16 78 16 {5} 
15 17 45 17 {14} 
16 19 35 19 {14} 
17 21 60 21 {10, 13} 
18 24 50 24 {10, 13} 

 
 

Table 2: The initial data of the Golenko-Ginzburg and Gonik project 

a Aa Ba R1a IPa 
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19 13 42 13 {17} 
20 16 30 16 {15, 18} 
21 12 21 12 {15, 18} 
22 14 20 14 {15, 18} 
23 16 42 16 {16} 
24 15 40 15 {12} 
25 13 28 13 {12} 
26 14 35 14 {8, 11} 
27 18 24 18 {7, 9} 
28 22 22 22 {7, 9} 
29 10 18 10 {26, 27} 
30 18 38 18 {24, 28} 
31 16 55 16 {24, 28} 
32 17 30 17 {25} 
33 19 37 19 {20, 23} 
34 20 38 20 {21, 32} 
35 15 55 15 {19, 22} 
36 24 22 24 {29, 30, 34} 

37 0 0 0 
{31, 33, 35, 

36} 

 
Table 3: The generated uncertain-but-bounded cash flow values 

a CF_Aa CF_Ma CF_Ba 

1 482 567 595 
2 335 394 414 
3 93 109 114 
4 416 489 513 
5 268 315 331 
6 275 323 339 
7 -363 -316 -300 
8 258 304 319 
9 299 352 370 
10 354 416 437 
11 150 176 185 
12 92 108 113 
13 734 863 906 
14 -378 -329 -313 
15 -499 -434 -412 
16 694 816 857 
17 802 943 990 
18 -125 -109 -104 
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Figure 2. Cash flow oriented early start project visualization with the nominal cash flow values. 
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Figure 3. Resource-usage oriented theoretically correct early start project visualization 

 
Table 4: The generated uncertain-but-bounded cash flow values 

a CF_Aa CF_Ma CF_Ba 

19 343 403 423 
20 -563 -490 -465 
21 468 550 578 
22 -148 -129 -123 
23 166 195 205 
24 -189 -164 -156 
25 -532 -463 -440 
26 230 271 285 
27 805 947 994 
28 226 266 279 
29 819 964 1012 
30 694 816 857 
31 116 137 144 
32 698 821 862 
33 -378 -329 -313 
34 -546 -475 -451 
35 202 238 250 
36 -316 -275 -261 

 
The total number of the generated random schedules was 1000  using the uniform 

random number generator to generate the durations and the cash flow values. We have to 
note again, that in our case the simulation is not a costly operation, because using a fast 
interior point solver and a totally unimodular formulation, the optimistic and pessimistic 
NPV optimization problem can be solve within a fraction of a second.  
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6. CONCLUSONS 
 
In this paper, we presented new primary-secondary-criteria scheduling model for resource-
constrained project scheduling problem (RCPSP) with uncertain activity durations and cash 
flows (RCPSP-UD-UC) approach producing a “robust” resource-feasible schedule, which is 
immune against uncertainties in the activity durations and which is on the sampling-based 
scenarios may be evaluated from duration and cost oriented point of view. In the presented 
approach, it is assumed that each activity duration and each cash flow value is an uncertain-
but-bounded parameter without any probabilistic or possibilistic interpretation and 
characterized by an optimistic and pessimistic estimations. The evaluation of a given robust 
schedule is based on the investigation of variability of the makespan as a primary and the net 
present value (NPV) as secondary criterion on the set of randomly generated scenarios given 
by a sampling-on-sampling-like process. Theoretically, the robust schedule-searching 
algorithm was formulated as a mixed integer linear programming problem, which is 
combined with duration and cost oriented sampling-based approximation phase. The model 
is invariant to the “real meaning” of the duration and cash flow estimations, therefore in the 
sampling-phase the pure "uncertain-but-bounded" approach can be replaced by possibilistic 
(membership function oriented) or probabilistic (density function oriented) or a mixed 
approach. In order to illustrate the essence of the proposed approach we presented detailed 
computational results for a larger and very challenging project instance borrowed from 
Golenko-Ginzburg and Gonik [14] and discussed by several authors in the literature. A 
problem specific fast and efficient harmony search algorithm for large uncertain problems, 
namely the RCPSP-UD-UC version of the Sounds of Silence (SoS) metaheuristic is a new 
member of the SoS family, which was originally developed by Csébfalvi et al. [16-17], more 
over it was extended for a wide range of the RCPSP [18-23], that will be presented in a 
forthcoming paper. 
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