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ABSTRACT 
 

Building performance simulation is being increasingly deployed beyond the building design 

phase to support efficient building operation. Specifically, the predictive feature of the 

simulation-assisted building systems control strategy provides distinct advantages in view of 

building systems with high latency and inertia. Such advantages can be exploited only if 

model predictions can be relied upon. Hence, it is important to calibrate simulation models 

based on monitored data. In the present paper, we report on the use of optimization-aided 

model calibration in the context of an existing university building. Thereby, our main 

objective is to deploy data obtained via the monitoring system to both populate the initial 

simulation model and to maintain its fidelity through an ongoing optimization-based 

calibration process. The results suggest that the calibration can significantly improve the 

predictive performance of the thermal simulation model. 
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1. INTRODUCTION 
 

1.1 Thermal performance simulations 

Building performance simulation tools are conventionally used to predict the future 

performance of building designs. More recently, however, the potential for the deployment 

of simulation in the buildings' operation phase is being increasingly explored. To conduct 
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building thermal performance simulation, several parameters are required to be defined, 

including: 

– Building geometry 

– Thermal properties of the construction components 

– Specification of the ventilation and infiltration rates 

– Heating and cooling systems 

– Internal loads such as occupants, lightings, etc.  

– Weather file and outdoor environment [1]. 

To support building design decision making via simulation, its reliability and fidelity is 

critical. However, the act of simulation always involves uncertainty due to required 

assumptions, simplifications, unknown parameters, and errors. For example, assumptions 

and simplifications in the modelling of the complex geometries and properties can cause 

systematic simulation errors. Moreover, the future state of buildings is insufficiently known 

during the design phase, thus affecting the accuracy of the predictions [2]. Another 

parameter, essential to be considered in performance simulations, is the "dynamic nature of 

the building operation" [3] and the associated variations in the relevant parameters affecting 

the building performance (e.g. seasonal changes in the environmental conditions or 

occupant’s behavior). Therefore, in order to evaluate the reliability of simulation predictions, 

we need to verify them in different time periods and under different conditions. 

 

1.2 Optimization aided calibration  

The quality of any simulation-based decision-making greatly depends on the reliability of 

the deployed simulation model [4]. Thus, to ensure that predictions are dependable, applied 

simulation models must be calibrated. The primary method to assure the accuracy and 

consistency of the predicted performance involves the simulated and the actual monitored 

parameters (e.g. comparing the measured and simulated indoor temperature or energy use) 

[5]. The approach is finding an automated method for calibration of the simulation models 

through an optimization-based process in order to minimize the differences between the 

actual and predicted building performance [6]. 

Generally, optimization is the process of finding optimal values for a set of independent 

parameters, which leads to minimization of an objective function. In a building simulation 

model, examples of the independent variables are, for instance, the material properties, and 

building component dimensions [7]. Optimization objectives could be, for example, 

minimization of the buildings' energy use and operation costs or – in case of simulation 

calibration – the minimization of the difference between the simulated and actual values of 

various building performance indicators [8]. Although, the use of building simulations in 

tandem with model optimization has been growing, formulation of appropriate algorithms 

for optimizations is still a challenge [9]. Given the dynamic nature of building operation, 

some input parameters of the model may have to be subjected to calibration on a recurrent 

basis  [3]. This circumstance implies that the calibration task cannot be approached as an ad 

hoc or one-time activity. Rather, it needs to be conducted on a systematic basis. 

Consequently, the entire calibration process should be preferably automated to ensure 

efficiency and consistency [10].  

Previous efforts have documented, amongst other things, the use of the GenOpt 

optimization application in the context of the simulation based building systems control [7, 
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10, 11 and 12]. GenOpt [13] is an optimization program geared toward the thermal building 

simulation [8]. It can be referred as an interface between the text-based building simulation 

programs, for instance EnergyPlus [14] and optimization algorithms [15]. 

 

 

2. METHODOLOGY 
 

2.1 Case study 

An existing building in Vienna, Austria, was selected as a case study to evaluate the 

potential of an optimization-aided thermal simulation model calibration. The monitoring 

system installed in this building continuously captures indoor environmental parameters. 

Thus, various streams of data are gathered from three offices within the building, including 

time-varying parameters such as the state of windows (open/closed), blinds (open/closed), 

lights (on/off), occupancy (absence/presence), and heat emission of the radiators (Table). 

Fig. 1 shows the floor plan of the building and the thermal zoning in the simulation model. 

The Figure includes also the location of the installed sensors. 

 
Table 1: Use of monitored data in the calibration process 

Data use Data point Unit 

Creating local weather data file 

Global horizontal radiation W.m-2 

Diffuse horizontal radiation W.m-2 

Outdoor air temperature oC 

Outdoor relative humidity % 

Wind Speed m.s-1 

Wind direction degree 

Atmospheric pressure Pa 

Creating the initial model 

Window contact - 

Electric light - 

Occupancy - 

Blind position - 

Radiators’ heat emission W 

Calibration Indoor air temperature oC 

 

2.2 The building model 

The building simulation engine EnergyPlus 7.0, was used in this study. In order to create the 

initial model, building geometry and thermal properties of the components were specified. 

Each monitored room was modeled as a separate thermal zone (zones 2, 3, 4 in Fig. 1). 

Moreover, for the purpose of a number of calibration scenarios, the adjacent non-monitored 

zones were also included in the model to control the boundary conditions of the monitored 

spaces. In addition, we populated the model with the mentioned streams of data provided by 
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the monitoring system. Incorporating the values of time-varying input parameters into the 

model was accomplished with the aid of a Matlab script [16]. This program calls different 

streams of monitored data from building management system database and converts them to 

compact schedules using EnergyPlus input file syntax. These schedules are later assigned to 

the corresponding input parameter in the model. 

 

 
Figure 1: Floor plan and thermal zoning 

 
Table 2: Run periods 

Periods Start date End date 

1st summer period  10.06.2011 23.07.2011 

2nd summer period 24.07.2011 26.08.2011 

1st winter period 15.02.2011 24.03.2011 

2nd winter period 15.02.2012 24.03.2012 

 

2.3 Run periods 

The model calibration and validation process involved a monitoring period of five months 

including two summer and two winter periods (Table 2). 

 

2.4 Optimization-aided calibration 

In an optimization-aided simulation model calibration, the objective function addresses the 

error in simulated output (in this case zone mean air temperature). In order to minimize the 

objective function, a number of input parameters of the model are systematically varied 

within specified ranges. To execute the optimization process, the generic optimization tool 

GenOpt was selected. This tool supports the efficient inclusion of simulation data from 

applications such as EnergyPlus in the course of the optimization [9]. The optimization 

algorithm was the hybrid generalized pattern search with particle swarm algorithm. This is 

one of the recommended generic algorithms for problems, where the cost function cannot be 

explicitly stated, but can be approximated numerically by a thermal building simulation 

program [13]. 
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2.5 Calibration studies 

To arrive at a calibrated simulation model of the offices under study, a sequence of 

simulation and calibration studies was conducted in terms of the following steps: 

1. A single zone model (zone 3, Fig. 1) was generated based on available information 

about the building and the monitored data. The monitored air temperature of the adjacent 

offices was used as boundary conditions of the zone. This model was simulated for all 

specified run periods (Table 2). The model evaluation statistics were derived based on the 

monitored and simulated zone mean air temperature. 

2. The single zone model was calibrated for the first run period (1st calibration). In this 

calibration, eight input parameters of the model were subjected to the optimization-based 

calibration (Table 3). Subsequently, the calibrated single zone model was evaluated for all 

run periods. 

3. A three-zone model of the building was developed (zones 2, 3 and 4, Fig. 1). This 

model was fed with the optimized values of the eight input parameters that were calibrated 

in step 2. The model was simulated and evaluated for entire run periods. 

4. The three-zone model was calibrated for the first summer period (2nd calibration) and 

validated for the second summer period. In this calibration step, only the infiltration and 

ventilation rates were subjected to optimization.  

5. The three-zone model was calibrated for the first winter period (3rd calibration) and 

validated for the second winter period. Similar to step 4, this calibration had two variables, 

namely infiltration and ventilation rates. 

6. A five-zone model was generated by adding the adjacent unmonitored spaces (zones 1 

and 5, Fig. 1). The mean air temperature of these two zones during the 1st summer period 

was subjected to the 4th calibration. The resulting model was validated for the 2nd summer 

period. 

7. Using the five-zone model, the mean air temperature of the adjacent zones (zones 1 

and 5, Fig. 1) during the 1st winter period was subjected to the 5th calibration. The resulting 

model was validated for the 2nd winter period. 

 

2.6 Calibration variables 

As thermal performance simulation models involve numerous input parameters, subjecting 

all these variables to an optimization-based calibration is computationally expensive. 

Methods such as sensitivity analysis can be deployed to identify the most influential 

parameters [16 and 17]. For the purposes of the present study, the calibration variables and 

their associated variation ranges were selected based on the authors' previous experiences.  

For the first calibration, eight input variables were selected (see Table 3), which address 

the heat transfer processes in the building, namely conduction, convection (air infiltration 

and ventilation), and solar radiation. For the second and third calibrations, only the 

infiltration and ventilation rates were subjected to calibration. The next two calibrations only 

tune the average indoor temperature of the adjacent zones during summer and winter. Table 

3 demonstrates the included calibration variables together with their initial values and 

variation ranges.  
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Table 3: Initial values (together with lower/upper limits) of the calibrations variables 

Calibration variables Units 
Lower 

limit 

Initial 

value 

Upper 

limit 

Calibration 

1st 2nd 3rd 4th 5th 

Solar transmittance          

Green 6mm glass - 0.34 0.48 0.62 ×     

Clear 6mm glass - 0.54 0.78 0.85 ×     

Thermal conductivity          

Mineral wool W.m-1.k-1 0.031 0.039 0.047 ×     

XPS W.m-1.k-1 0.03 0.05 0.07 ×     

Density          

Ceiling concrete kg.m-3 1260 1800 2340 ×     

Wall concrete kg.m-3 980 1400 1820 ×     

Infiltration rate          

Summer h-1 0.1 0.2 0.4 × ×    

Winter h-1 0.1 0.2 0.4   ×   

Ventilation rate          

Summer h-1 0.5 1.0 3.0 × ×    

Winter h-1 0.5 1.0 3.0   ×   

Mean air temperature          

Zone 1         Summer oC 23.6 26.7 28.3    ×  

Winter oC 19.6 24.2 26.3     × 

Zone 5         Summer oC 23.6 26.6 28.3    ×  

Winter oC 19.6 23.9 26.3     × 

 

2.7 Cost function 

In an optimization-aided calibration, the cost function addresses the difference between the 

measured and simulated values. In the present study, this was calculated for the zone mean 

air temperature. To address the error in the cost function two model evaluation statistics 

were used. The first statistic is the "Coefficient of Variation of the Root Mean Squared 

Deviations" (Equations 1 & 2). CV(RMSD) aggregates the runtime individual time step 

errors into a single dimensionless number [10, 18 and 19]. 
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The other deployed statistic is the "coefficient of determination" denoted by R². R-

squared describes the proportion of the variance in measured data explained by the model 

[20]. The coefficient of determination ranges from 0 to 1. An R² of 1.0 indicates that the 

regression line perfectly fits the data. Therefore, the R² value is to be maximized in the 

optimization process. Van Liew et al. concluded that the values more than 0.5 can be 

counted as indicative [21] R² was calculated via Equation 3. 
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In Equations 1 to 3, mi is the measured air temperature at each time step, si is simulated 

air temperature at each time step, n is the total number of time steps, and m  is the mean of 

the measured values. The defined cost function f takes into account the CV(RMSD) and R²  

in an equally weighted manner (Equation 4). 
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In Equation 4, CV(RMSD)i is the coefficient of variation of the RMSD at each 

optimization iteration, Ri² is the coefficient of determination at each optimization iteration, 

CV(RMSD)ini  is the coefficient of variation of the RMSD of the initial model, and Ri² is the 

coefficient of determination of the initial model. In case of models with multiple thermal 

zones, the statistics are calculated for each zone and the cost function is calculated based on 

the averaged statistics. 

To efficiently manage the repetitive process of varying the input parameters’ values, the 

calculation of the cost function was tightly integrated with the simulation application. To 

accomplish this, the monitored indoor air temperatures were incorporated into the model 

input stream. EnergyPlus runtime language was used to calculate the cost function after each 

run of the model [22]. 

 

 

3. RESULTS 
 

As shown in Table 3, six variables, which are related to physical properties of the building, 

were calibrated in the course of the first calibration (first run period). Table 4 includes the 

respective results. Note that these values were not changed in the course of later calibration 

runs. However, the infiltration and ventilation rates, as time-varying input parameters, were 

calibrated in the single-zone model in summer conditions (1st calibration), as well as in the 

three-zone model in summer and winter conditions (2nd and 3rd calibration). The mean air 

temperature of the adjacent zones was also calibrated separately for summer and winter 

conditions (4th and 5th calibration).  
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The respective calibrated values are summarized in Table 5. Table 6 includes the model 

evaluation statistics used in the weighted cost function, for the initial and calibrated models 

during different run periods. 

 
Table 4: The optimized values of physical properties of the model in the first calibration 

Calibration variables Units Optimized value 

Solar transmittance   

Green 6mm glass - 0.34 

Clear 6mm glass - 0.54 

Thermal conductivity   

Mineral wool W.m-1.k-1 0.031 

XPS W.m-1.k-1 0.03 

Density   

Ceiling concrete kg.m-3 1260 

Wall concrete kg.m-3 980 

 
Table 5: The optimized values of time-varying input parameters in performed calibrations 

Calibration variables Units Performed calibrations 

1st 2nd 3rd 4th 5th 

Infiltration rate       

Summer h-1 0.40 0.12 - 0.12 - 

Winter h-1 - - 0.28 - 0.28 

Ventilation rate       

Summer h-1 0.50 0.59 - 0.59 - 

Winter h-1 - - 0.50 - 0.50 

Mean air temperature       

Zone 1              Summer oC - - - 28.0 - 

                          Winter oC - - - - 25.4 

Zone 5          Summer oC - - - 26.9 - 

                           Winter oC - - - - 26.0 
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Table 6: Model evaluation statistics of the initial and calibrated models in different run periods 

Step Models 1st Run period 2nd Run period 3rd Run period 4th Run period 

 
CV 

(RMSD) 
R2 CV 

(RMSD) 
R2 CV 

(RMSD) 
R2 CV 

(RMSD) 
R2 

1 Initial 1Z 4.5% 0.77 4.9% 0.94 15.1% 0.26 16.3% 0.69 

2 1st calibrated 1Z 1.4% 0.88 2.2% 0.96 4.4% 0.35 5.5% 0.81 

3 Initial 3Z 7.6% 0.69 7.3% 0.89 19.4% 0.50 13.2% 0.61 

4 2nd calibrated 3Z 5.1% 0.68 4.4% 0.86 - - - - 

5 3rd calibrated 3Z - - - - 12.0% 0.48 7.3% 0.60 

6 4th calibrated 5Z 3.8% 0.68 3.8% 0.89 - - - - 

7 5th calibrated 5Z - - - - 6.6% 0.48 6.1% 0.63 

 

 

4. DISSCUSSION 
 

The results suggest that the 1st calibration exercise (single-zone model) significantly 

improved model predictions (see Table 6, Step 2, 2nd to 4th run periods): CV(RMSD) values 

for the calibrated model are smaller than their non-calibrated counterparts, whereas R2 

values are higher. The initial three-zone model did not perform very well, even though it 

inherited calibrated variable values derived in the 1st calibration run (see Step 3, Table 6). 

The reason for this may be the uncertainty regarding the boundary zone assumptions. 

Internal walls separating zones 1 and 2 as well as zones 4 and 5 were assumed to be 

adiabatic. Calibration of infiltration and ventilation assumptions did not improve the model's 

performance in a noteworthy manner (see, Table 6 Step 4 and 5). Only when assumptions 

regarding indoor temperature of zones 1 and 5 were subjected to calibration, a better model 

performance could be achieved (Table 6, Step 6 and 7).  The performance of optimization-

based calibration approach could be improved via more case studies. Moreover, to further 

rationalize the calibration process, methods like sensitivity analysis could be deployed to 

identify a subset of the input variables most likely to influence the simulation results. 

 

 

5. CONCLUDING REMARKS 
 

A case study of an optimization-based calibration method for a thermal performance model 

of a building was presented. In the course of multiple simulation and calibration steps, ten 

simulation input variables were subjected to calibration, using monitored data (measured 

room temperatures). The optimization-based calibration process utilized a cost function that 

considered both the goodness of fit of the model and error minimization (difference between 

monitored and simulated values). The results suggest that the predictive performance of 

simulation models can be noticeably improved, given monitored data to support an 

optimization-supported simulation model calibration. 
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