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ABSTRACT 
 

A constrained version of the Big Bang-Big Crunch algorithm for the efficient solution of 
the optimal reservoir operation problems is proposed in this paper. Big Bang-Big Crunch 
(BB-BC) algorithm is a new meta-heuristic population-based algorithm that relies on one 
of the theories of the evolution of universe; namely, the Big Bang and Big Crunch theory. 
An improved formulation of the algorithm named Constrained Big Bang-Big Crunch 
(CBB-BC) is proposed here and used to solve the problems of reservoir operation. In the 
CBB-BC algorithm, all the problems constraints are explicitly satisfied during the solution 
construction leading to an algorithm exploring only the feasible region of the original 
search space. The proposed algorithm is used to optimally solve the water supply and 
hydro-power operation of “Dez” reservoir in Iran over three different operation periods 
and the results are presented and compared with those obtained by the basic algorithm 
referred to here as Unconstrained Big Bang–Big Crunch (UBB–BC) algorithm and other 
optimization algorithms including Genetic Algorithm (GA), Ant Colony Optimization 
(ACO) and Particle Swarm Optimization (PSO) and those obtained by Non-Linear 
Programming (NLP) technique. The results demonstrate the efficiency and robustness of 
the proposed method to solve reservoir operation problems compared to alternative 
algorithms. 
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1. INTRODUCTION 
 

Various methods with different level of complexity and success have been proposed and 
used to solve reservoir operation problems.  These methods can be divided into two general 
categories: 1- Traditional or mathematical methods such as linear programming (LP), non-
linear programming (NLP), and dynamic programming (DP); 2- Metaheuristic algorithms 
such as Genetic algorithms (GA), Particle swarm optimization (PSO), Ant Colony 
Optimization (ACO), Simulating Annealing (SA) and Honey Bee Mating Optimization 
(HMBO) algorithm. Amongst mathematical methods, LP is well known as the most simple 
optimization technique because it is easy to understand and does not need any initial 
solution. The first use of LP in reservoir operation optimization problem has been reported 
by Dorfman [1] illustrating the use of LP to maximize an economic objective function. 
ReVelle et al. [2] proposed the chance-constrained LP method for the optimal operation of a 
reservoir system under probabilistic constraint. Windsor [3] developed a LP model for flood 
control operation of a multi-reservoir system. Marino and Mahammadi [4] developed a 
model based on chance‐constrained LP (CCLP) and dynamic programming (DP) to 
determine the optimum monthly releases from a multipurpose reservoir. Martin [5] used a 
Successive LP (SLP) to iteratively change the daily reservoir releases to improve system 
performance. Mohan and Raipure [6] developed a linear multi-objective programming 
model to derive the optimal releases for various purposes from a large‐scale multireservoir 
system in India. Dahe and Srivastava [7] extended the basic yield model and presented a 
multiple-yield model for a multiple-reservoir system consisting of single-purpose and 
multipurpose reservoirs. Tu et al. [8] developed a mixed integer LP (MILP) model 
considering both the traditional reservoir rule curves and the hedging rules to manage and 
operate a multi-purpose, multi-reservoir system. 

NLP methods is not widely used in water resource problems mainly due to the fact that 
the optimization process is very slow and require large amounts of computer storage and 
time compared to alternative methods. Nevertheless, some researchers have used NLP to 
solve some of the problems raised in water resource management. Tejada-Guibert et al. [9] 
developed a NLP model for the monthly optimal operation of a hydro-power system. Ostfeld 
and Shamir [10] develop a model for the optimal operation of a multi-quality water supply 
system under steady-state conditions. Pezeshk et al. [11] used a NLP model to minimize 
pumping costs of a well field and a water supply distribution system. Teegavarapu and 
Simonovic [12] developed a mixed integer NLP model for the short term operation of 
hydropower reservoirs in Manotba, Canada. Ghahraman and Sepaskhah [13] developed a 
NLP optimization model with an integrated soil water balance for allocation of a limited 
water supply. Mouatasim [14] formulated the pump operations optimization problem as a 
Boolean Integer Nonlinear Programming (BINLP) problem to minimize the cost of electrical 
energy pump operation of a multi-reservoir system.. 

DP, originally developed by Bellman [15] decomposes a complex problem into a series of 
simpler sub-problems which are solved sequentially, while transmitting information from one 
stage of the computations to the next stage. Young [16] used a deterministic DP to determine 
Operating rule of a single reservoir. Hall et al. [17] used DP to maximize revenues from the 
sale of water and energy of a single reservoir. Dudley and Burt [18] used Stochastic DP (SDP) 
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to maximize net benefits from irrigation water for a single crop situation. Arunkumar and Yeh 
[19] used the stochastic DP to maximize firm power output of hydropower system. Becker and 
Yeh [20] used a form of DP for the selection of an optimal reservoir storage policy and a LP 
for period by period optimization.  Collins [21] developed a DP model to optimal operation of 
a 4-reservoir water supply system. Allen and Bridgeman [22] applied DP to three case studies 
involving hydropower operation objective. Margeta and Fontane [23] combined DP 
optimization and hydraulic simulation model for the operation of hydroelectric reservoir 
facilities during periods of flood flows. Feiring and Sastri [24] addressed an application of SDP 
to a water resource system with a dual-purpose of generating electricity and supplying water 
for agricultural irrigation. Tilmanta et al. [25] presented a Fuzzy Stochastic Dynamic 
Programming (FSDP) approach to derive steady-state multipurpose reservoir operating 
policies. Liu et al. [26] proposed Dynamic Programming Neural-network Simplex (DPNS) 
model to derive refill operating rules in reservoir operation and applied to the case study of 
Three Gorges Reservoirs. Ganji et al. [27] used the game theory fundamentals to develop a 
Stochastic Dynamic Nash Game with perfect information (PSDNG) model to resolve the 
associated conflicts among different consumers due to limited water. Nandalaln and Bogardi 
[28] discussed applicability and limitations of DP models, specifically in reservoir operation 
problems. Kumar et al. [29] adopted Folded Dynamic Programming (FDP) for developing 
optimal reservoir operation policies for flood control. Goor et al. [30] illustrated the difference 
between the two SDDP formulations on the energy generation and the allocation decisions 
using a network of hydropower plants and irrigated areas in the Nile Basin. While DP has 
proved to be an effective method, it lacks efficiency in particular when solving large scale 
reservoir operation problems. 

Despite some benefits of the traditional methods, these methods suffer from some 
disadvantages. LP methods can only be used for linear problems while most of the real 
world operation problems are nonlinear. NLP methods are only reliable when used for the 
solution of convex problems while most of hydropower operation problems are non-convex 
problems. DP and its variants are theoretically capable of globally solving any reservoir 
operation problems but these methods are known to be computationally very demanding. 
For large scale operation problems, DP based method are faced with the so-called curse of 
dimensionality making them impractical to use.    

Metaheuristic algorithms has been introduced and used in water resource problems to 
overcome some of the complexities such as nonlinearity, non-convexity, discontinuity and 
discreteness which limit the applications of mathematical optimization methods in reservoir 
systems optimization [31]. 

GA, as the first meta-heuristic algorithm used to solve water resources problems, is a 
robust method for searching the optimum solution to a complex problem although it may not 
necessarily lead to the best possible solution. The method was originally introduced by 
Goldberg [32] and is now developed into a powerful optimization approach. East and Hall 
[33] applied a GA to the four–reservoir problem. Oliveira and Loucks [34] used a GA model 
to derive operating rules for multi reservoir systems. Sharif and Wardlaw [35] applied GA 
for the optimization of multi-reservoir system in Indonesia. Kerachian and Karamouz [36] 
developed a modified version of the simple GA for application to a reservoir operation 
problem. Chang et al, [37] proposed a constrained GA (CGA) for multi-use water resources 
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management incorporating human needs and ecological sustainability requirements. A 
critical review and state-of-the-art applications of GAs in water resources planning and 
management field can be found in Nicklow et al. [38]. 

Particle swarm optimization (PSO) originally proposed by Eberhart and Kennedy [39] as 
a population-based heuristic search technique inspired by the social behavior of bird 
flocking has also been used in reservoir operation field. Reddy and Kumar [40] proposed a 
multi-objective PSO approach for generating Pareto-optimal solutions for reservoir 
operation problems. Afshar [41] introduced two mutation mechanisms to balance the 
explorative and exploitative characteristics of the PSO algorithm and applied them to single 
reservoir operation problems. Baltar and Fontane [42] presented a multi-objective PSO 
(MOPSO) solver and used it to generate Pareto optimal solutions for two water resources 
problems with up to four objectives.  

Ant Colony Optimization Algorithm (ACOA) is another meta-heuristic optimization 
algorithm proposed by Dorigo [43] which has been extensively used to solve different 
optimization problems including reservoir operation problems. Jalali et al. [44] used a multi-
colony ACOA to solve a multi-reservoir operation problem with ten-reservoir.  Kumar and 
Reddy [45] used ACOA for solving multi-purpose reservoir operation. Afshar and Moeini 
[46] presented a constrained formulation of the ACOA for the optimization of large scale 
reservoir operation problems. 

Some researchers have used Simulated Annealing (SA) introduced by Kirkpatrick et al. 
[47] as a stochastic search technique inspired by the process of metals annealing in physics 
for reservoir operation. Teegavarapu and Simonovic [48] were the first to use this technique 
in reservoir systems operation problems. Chiu et al. [49] proposed a hybrid GA-SA 
algorithm for fuzzy programming of reservoir operation.  

Haddad et al. [50] used Honey Bees Mating Optimization (HBMO) algorithm inspired by 
the process of mating in real honey bees for single reservoir operation and compared the 
results with those obtained by GA. 

In this paper, the newly proposed method of Big-Bang Big Crunch algorithm is used for 
the optimal solution of reservoir operation problems for the first time. Application of this 
method to other engineering problems has revealed its potential as a powerful optimization 
technique. A constrained formulation of this algorithm named Constrained Big Bang-Big 
Crunch (CBB-BC) is also proposed to improve accuracy and convergence characteristics of 
the method. In the constrained version, all the explicit constraints of the problem are 
enforced during the solution construction so that the BB-BC search is only carried out in the 
feasible region of the problem search space. Efficiency and accuracy of the original BB-BC 
referred to here as Unconstrained Big Bang-Big Crunch (UBB-BC) and the proposed CBB-
BC for the optimal operation of reservoirs systems are compared for the water supply and 
hydropower operation of “Dez” reservoir in Iran for three operation periods and the results 
are presented and compared to those obtained by other meta-heuristic approaches. 

 
 

2. INTRODUCTION TO BB–BC METHOD 
 

Two of the famous theories about of the evolution of the universe are Big bang and Big 
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crunch theories. According to Big bang theory, the universe, originally in an extremely hot 
and dense state that expanded rapidly, has since cooled by expanding to the present diluted 
state and continues to expand today. This theory explains beginning of the creation of the 
universe very well but does not explain the end of the universe. One of the scenarios about 
the end of the universe that considered by astronomers is Big Crunch theory. It tells us that 
the Universe’s expansion, which is due to the Big Bang, will not continue forever. Instead, 
at a certain point in time, it will stop expanding and collapse into itself, pulling everything 
with it until it eventually turns into the biggest black hole ever. Erol and Eksin [51], inspired 
by these theories, introduced a new optimization algorithm named Big Bang-Big Crunch 
(BB-BC) algorithm. This algorithm has two phases; Big Bang phase similar to Big Bang 
Theory and Big Crunch phase similar to Big Crunch Theory. In the Big Bang phase, the 
randomly generated population of candidates is uniformly distributed over the search space. 
Then, in the Big Crunch phase these candidates are concentrated to a point using a 
convergence operator namely center of mass. Using of center of mass, the new position of 
each candidate is calculated. This process is repeated until convergence is achieved. 

In the original version of the algorithm, center of mass is calculated as follows: 
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where new,i

jx  is the new value of the jth component from ith candidate, r is a random number 
with a standard normal distribution, c1 and c2 are tow constants and k  is the iteration index. 

max
jx  and min

jx  are maximum and minimum value of the j th component of the variable x. 
Other forms of the center of mass can also be used. Here, the best solution of each 

iteration is used as the center of mass. 
Most of the applications of BB-BC algorithm in engineering field have been reported for 

the optimal design of structures. Camp [52] used BB-BC algorithm to minimize the total 
weight of structures subjected to material and performance constraints. Kaveh and Talatahari 
[53] used a Hybrid BB-BC (HBB-BC) for the optimal sizing of space truss structures which 
was later extended for optimal design of schwedler and ribbed domes [54]. Tang et al. [55] 
used BB-BC algorithm for parameter estimation of structural systems.  
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3. SINGLE RESERVOIR OPERATION PROBLEMS 
 

Reservoir operation is a large scale multi-objective optimization problem involving 
hydrology, reliability, hydropower, agriculture, and environment. No algorithm is shown to 
be practically capable of handling all the aforementioned requirements. Due to the 
complexity of the problem, most of the existing algorithms are therefore restricted to 
considering some simplified form the problem depending on the characteristics of the search 
algorithm used. Reservoir operation is a complex problem due to the nonlinearity of the 
objective functions and the number of constraints presenting a challenge to optimization 
techniques. Here the water supply and hydropower operation of a single reservoir is 
considered in such a way that complexity of real-world reservoir operation problems namely 
the nonlinearity of the objective function and the number of constraints are reflected in the 
apparently simple problem considered. Extension of the method to multi-reservoir problems 
will pose no problem once the basics of the method are understood. 

The water supply operation of a single reservoir can be expressed as:  
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where D (t) is water demand in period t in Million Cubic Meters (MCM), r (t) is release 
from the reservoir in period t (MCM), Dmax is maximum demand in the whole operation 
period (MCM), NT is the number of operation periods, s (t) is storage at the start of period t 
(MCM), I (t) is inflow in period t (MCM), smin and smax are minimum and maximum 
available storage in reservoir (MCM), respectively and rmin and rmax are minimum and 
maximum allowed release from reservoir (MCM), respectively. 

The hydropower operation of a single reservoir, on the other hand, is defined as: 
 

                                        
2NT

1t power
)t(p1F  Minimize ∑

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=                                (7) 

 
subject to the constraints of (4) to (6) defined above. Here p (t) is power generated in Mega 
Watt (MW) by the hydro-electric plant in period t, Power is total capacity of hydro-electric 
plant (MW). The power generated at operation period t can be stated as follow:  
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With 

                                             TWL
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Where g is the gravity acceleration equal to 9.81 m2/s, η is the efficiency of the 
hydroelectric plant, r (t) is release from reservoir (m3/s), PF is the plant factor, h (t) is the 
effective head of the hydroelectric plant (m), H (t) is the elevation of water in reservoir at 
period t (m), TWL is the downstream elevation of the hydroelectric plant (m), a, b, c and d 
are four constant which can be obtained by fitting equation (10) to the existing data.  

 
 

4. PROPOSED CONSTRAINED BIG BANG-BIG CRUNCH (CBB-BC) 
ALGORITHM 

 
Formulation of the optimal operation of a single reservoir as an optimization problem 
requires that the decision variables of the problem are defined. Basically, two different set of 
decision variables can be selected in reservoir operation problems, namely storage volumes 
or releases at each period. Different methods have used different set of decision variables for 
the reservoir operation problems. Here, the storage volumes are taken as the decision 
variables of the problem while the method can be used with release volumes taken as 
decision variables. Assuming a known value for the storage volume at the beginning of the 
operation period, the total number of decision variables would be equal to the number of 
operation period NT. 

For the problem so defined, application of the UBB-BC is straightforward and does not 
require detailed description. Each candidate solution, NT,...,j;xi

j 1=  is created randomly at 
the start of the computation within the bounds defined in Eq. (5). The centre of gravity is 
computed using Eq. (1) for the current population and each candidate solution is then 
updated using Eq. (2) to form the new population. The process is continued until some 
convergence criterion is fulfilled or the maximum number of populations is exhausted. A 
note, however, has to be made regarding release constraint satisfaction in UBB-BC 
algorithms. The solutions created by the UBB-BC might violate the release constraint of Eq. 
(6). To force the algorithm to produce feasible solutions, the solutions that have violated the 
release constraints are penalized depending on the magnitude of the constraint violation. For 
any trial solutiondefined by the known values of the storage volumes at the beginning and 
the end of each period and using the continuity equation, release volumes can be calculated 
at each period. The releases values are then used to calculate the constraint violation of the 
solution using the following non-dimensional form of Eq. (6): 
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Where CV (t) is the constraint violation at period t. 

The original objective function of (3) or (7) is now rewritten in a penalized form as 
follows: 
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Where F is the original objective function, Fp is the penalized objective function, and pen is 
the penalty parameter with large enough value so that any infeasible solution has a penalized 
objective function greater than any feasible solution. 

An interesting feature of BB-BC algorithm which can be found in some of the heuristic 
search methods such as ACOA and PSO is the incremental solution building capability 
which is very useful in solving optimization problems of sequential nature such as reservoir 
operation problems. This feature allows for the explicit satisfaction of the problem 
constraints which leading to reduction of the search space size depending on the 
characteristics of the problem and its constraints. This can, in turn, improve the efficiency 
and effectiveness of the algorithm.  This concept is used here to develop constraint a version 
of BB-BC algorithm referred to as Constrained Big Bang-Big Crunch (CBB-BC) algorithm 
in which all constraints of the problem are satisfied during the solution construction.  

The proposed concept is introduced into the BB-BC method in two stages. In the first 
stage, infeasible regions of the problem is partially determined and excluded from the search 
space prior to the main calculation to prevent candidates to select options located in 
infeasible area.  For this, the periods of operations are swept in reverse order and a set of 
new bounds are calculated for the storage volumes such that the CBB-BC algorithm defined 
above is not given any chance of producing infeasible solutions. To clarify this, consider the 
continuity equation at a period t along with the release and storage volume constraints:  
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Substituting s(t+1) from Equation (13) into Equation (14), leads to the following 
constraints for the storage volume s(t) at the beginning of the period ensuring that the end of 
the period storage volume s(t+1) is feasible. 

 
                   )t(r)t(I)1t(s)t(s)t(r)t(I)1t(s maxmin +−+≤≤+−+                  (17) 
 
For this constraint to be valid for any value of release in the range ],[ maxmin rr , the 

following equation should hold.  
 

                       maxmaxminmin r)t(I)1t(s)t(sr)t(I)1t(s +−+≤≤+−+              (18) 
 
Combining Equation (18) with the original constraints of Equation (15) leads to the 

following constraints for the storage volume at the beginning of the period.  
 

                                                )t(s)t(s)t(s maxmin ≤≤                                              (19) 
with 
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                                )r)t(I)1t(s,smin()t(s maxmaxmaxmax +−+=  (21) 

 
Where smin(t) and smax(t) are maximum and minimum of storage volume bounds at period t 
which could be different from one period to another in contrast to the original bounds of the 
storage volume smin and smax assumed to be constant for all periods. Starting from the last 
period of operation NT, Eq. (19) is used to calculate the new bounds for the storage volume 
at the beginning of the period s(NT) using smin(NT+1)=smax and smax(NT+1)=smax . Having 
calculated the bounds smin(NT) and smax(NT), the same process is used to calculate the new 
bounds for the storage volume at the beginning of period NT-1. The process of updating the 
storage volume bounds is continued until all operation periods are covered leading to new 
storage bounds  smin(t) and  smax(t) for all t=2…,NT. It is obvious that the new search space 
defined by the updated bounds of the storage volumes is now much smaller leading to 
efficiency of the search method. Furthermore, the trial solution created by the BB-BC 
algorithm will be mostly feasible since the infeasible region of the search space is now 
partially excluded. This, however, does not guarantee that the all the solutions constructed 
by the BB-BC algorithm will be feasible. One obvious reason is that the operation is to start 
from a known storage volume. To completely remove the possibility of creating infeasible 
solutions, the above mentioned process is augmented with a mechanism which ensures the 
release constraint satisfaction during solution construction. 

For this, starting from the first period of the operation and with the storage volume being 
known at the beginning of the period, the continuity equation is used to obtain a new set of 
bounds for the storage volume at the end of period such that the release constraintof Eq. (6) 
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is fully satisfied by the resulting release of the period. For this, assuming a known value of 
s(t) for the storage volume at the beginning of the period t, continuity equation is used to 
replace the release in terms of the end of the period storage volume s(t+1) in Eq. 6 resulting 
in the following constraint for  s(t+1) . 

 
                           minmax r)t(I)t(s)1t(sr)t(I)t(s −+≤+≤−+                         (22) 
 
Combining these equations with the updated box constraints of storage volume defined 

by Eq. (19) leads to the following constraint. 
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where )1(min +′ ts  and )1(max +′ ts  are new bounds for the storage volumes at the end of 
period t. Starting from period one and using the known value of s(1), the above equation can 
be used to obtain a new set of bounds for the storage volume s(2). Eq. (2) is now used to 
find the value of s(2) representing ix1  within the bounds )]2(),2([ maxmin ss ′′ already calculated 
using Eq. (24) and (25). The calculated value of s(2) is then used to find the new bounds for 
the storage volume s(3) and to update its value. This process is continued until all operation 
periods are covered leading to the complete construction of a new trial solution. Any trial 
solution NTjxi

j ,....,1; = , defined by the storage volumes at the end of operation periods, 
constructed in this mannerwill automatically satisfy not only the storage volume constraint 
of Eq. (5) but also the release constraint of Eq. (6) and, therefore, constitute a feasible 
solution. The CBB-BC algorithm so defined will obviously be expected to show superior 
performance regarding both efficiency and effectiveness compared to the original UBB-BC 
algorithm. 

 
 

4. CASE STUDY 
 

To evaluate the performance of proposed algorithms, simple and hydropower operation of 
“Dez”reservoir in southern Iran is considered as test examples. Total storage volume of 
“Dez”reservoir is equal to 2510 MCM, and average of water inflow is equal to 5900 MCM 
over 40 years and 5303 MCM over 5 years. The initial storage of the reservoir is taken equal 
to 1430 MCM .The maximum and minimum allowable storage volumes are considered to be 
3340 and 830 MCM, respectively. The maximum and minimum monthly water release is 
taken to be 1000 MCM and 0, respectively. The coefficients of the volume-elevation curve 
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defined by Equation (10) are taken as: 
 

                  a = 249.83364, b = 0.058720, c = -1.37×10-5, d = 1.526×10-9 

The hydroelectric plant consists of eight units; the capacity of each is equal to 80.8 MW 
working 10 hours per day, leading to a plant factor of 0.417. The total capacity of the 
hydroelectric plant is 650 MW and its efficiency is 90% (η = 0.9). The downstream 
elevation of the hydroelectric plant above sea level is 172 m (TWL = 172).  

The problems are solved here using conventional UBB-BC and proposed CBB-BC 
algorithm using c1=7.0 and c2=1.0. The value of c2=1.0 is assumed a priori and the value of 
c1=7.0 was obtained via a tuning procedure. All the results presented here are obtained using 
50 populations and 8000 iterations amounting to 400000 function evaluations. 

Table 1 shows the solution obtained using the UBB-BC algorithm for the simple and 
hydropower operation of “Dez”reservoir over 5, 20 and 40 years, i.e.; 60, 240 and 480 
monthly periods, respectively.As can be seen from Table 1, all the solutions obtained 
using UBB-BC in ten runs for simple and hydropower operations are feasible. These 
results can be compared with those obtained by the conventional Ant Colony 
Optimization Algorithm, referred to as UACOA, reported by afshar and Moeini [46]. The 
results show that UACOA was capable of producing 10 feasible solutions for the 
simplest case of simple operation over 60 monthly periods and 8 feasible solutions for 
the hydropower operation over60 monthly periods. In longer operation periods i.e. 240 
and 480 monthly periods, the number of runs with infeasible solution increases. For 240 
monthly periods, only 8 and 7 feasible solutions were created for simple and hydropower 
operations, respectively while for 480 monthly periods, UACOA was only capable of 
producing one feasible solution for both simple and hydropower operation. These results 
indicate that UBB-BC has been successful to solve large scale reservoir operation 
problems. 

 
Table 1. The results obtained using UBB-BC algorithmover 10 runs 

Operation 
method 

Operation 
period Minimum Maximum Average 

No. of runs 
with feasible 

solution 
Time 

60 0.76519 1.1937 0.89142 10 11.8 

240 5.2315 7.358 6.2119 10 28.5 Water supply 

480 16.143 22.609 19.274 10 56.7 

60 7.8215 11.576 8.7517 10 21.9 

240 25.839 30.506 27.695 10 67.3 Hydropower 

480 66.596 83.287 73.144 10 136.4
 
The problems are solved again by the proposed CBB-BC algorithm and the results are 
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presented in Table 2. As can be seen, the maximum, minimum, and average solution costs 
obtained using CBB-BC are all superior to those obtained by the UBB-BC for both types of 
operation and for all operation periods considered. To further evaluate the efficiency of the 
proposed algorithm, the results can be compared with the results obtained by genetic algorithm 
(GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), and those 
obtained by Lingo 9 using NLPpresented in Table 3 [56,46].  

 
Table 2. The results obtainedusing CBB-BC algorithm over 10 runs 

Operation 
method 

Operation 
period Minimum Maximum Average Time 

60 0.734 0.73602 0.73507 12.7 

240 4.882 4.9266 4.902 33.3 Water supply 

480 10.971 11.035 10.999 59.4 

60 7.473 7.5987 7.5466 22.6 

240 25.086 27.555 25.928 77.7 Hydropower 

480 62.136 64.469 63.359 138.1 
 
This table shows that while GA was unable to found a feasible solution for the longest 

operation period, the PSO algorithm could produce feasible solution only for the shortest 
operation period, andthe ACO algorithm, like GA, was unable to produce feasible solution 
for the longest operation period, the solutions obtained by the proposed CBB-BC algorithm 
are all feasible and superior to those of ACO, GA, and PSO by all measures. An improved 
version of ACOA referred to as Fully Constrained Ant Colony Optimization Algorithm 
(FCACO)was proposed by Afshar and Moeini [46] and used to solve these problems with 
the results shown in Table 3. Comparison of the results shows that while all the results 
produced by the FCACOA are feasible, they are inferior to the solutions obtained by the 
proposed CBB-BC algorithm.  

 
Table 3. Results obtained using alternative methods for the operation of “Dez” reservoir 

Model Objective Operation period Minimum Maximum Average 

60 7.75E−01 9.36E−01 8.70E−01 
240 4.17E+01 2.49E+02 1.12E+02 Water supply 

480 7.41E+03 2.09E+04 1.34E+04 
60 8.08E+00 9.10E+00 8.48E+00 

240 5.51E+01 6.17E+02 1.59E+02 

GA 

Hydropower 
480 2.73E+04 6.17E+04 4.00E+04 
60 1.07E+00 3.85E+00 2.06E+00 

240 1.26E+02 1.50E+03 5.94E+02 
PSO 

Water supply 
480 8.47E+03 2.36E+04 1.45E+04 
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60 9.26E+00 1.43E+01 1.13E+01 
240 2.21E+02 4.32E+03 1.60E+03 Hydropower 

480 2.51E+04 7.04E+04 4.18E+04 
60 7.85E−01 8.14E−01 8.00E−01 

240 1.03E+01 1.33E+01 1.20E+01 Water supply 
480 6.56E+01 1.94E+02 1.13E+02 
60 7.91E+00 8.06E+00 8.00E+00 

240 3.53E+01 4.00E+01 3.76+01 

ACO 

Hydropower 
480 1.05E+02 2.75E+02 1.78E+02 
60 1.00E+00 1.12E+00 1.04E+00 

240 7.98E+00 8.85E+00 8.43E+00 Water supply 
480 1.87E+01 1.99E+01 1.93E+01 
60 8.23E+00 9.01E+00 8.52E+00 

240 2.58E+01 2.83E+01 2.72E+01 

FCACOA 

Hydropower 
480 6.68E+01 7.00E+01 6.81E+01 
60 7.32E-01 - - 

240 4.77E+00 - - Water supply 
480 1.05E+01 - - 
60 7.37E+00 - - 

240 2.06E+01 - - 

NLP  
(Lingo 9) 

Hydropower 
480 4.54E+01 - - 

 
The results of the proposed CBB-BC algorithm shown in Table 2 can be compared with 

the solutions obtained using global option of Lingo 9 which presumably yields global 
optimum even for non-convex problems[56]. Global solutions obtained by Lingo 9 are 
reported to be 0.732, 4.77, and 10.5for the simple operation over 60, 240 and 480 monthly 
periods, respectively, and 7.37, 20.6 and 45.4 for the hydropower operation over 60, 240 and 
480 monthly operation periods, respectively. While the results obtained by the proposed 
CBB-BC are nearly the same as the global optimum for the shortest operation period, the 
results for the longest operation periods are sub-optimal only by 9 and 36 percent for the 
simple and hydropower operations, respectively. 

This problem has also been solved by Jalali [57] for 5 and 40 years of water supply 
operation and 5 ofhydropoweroperation using ACO with Discrete Refining (DR) 
mechanism. The best solutions for the 5 and 40 years water supply operation were reported 
to be 0.803 and 36.46, respectively while the best solution obtained for the For 5 years 
hydropower operation was7.504.These can be compared with the solutions of 0.734 and 
10.971 obtained by the proposed CBB-BC algorithm for the 5 and 40 years water supply 
operation and the solution of 7.473 obtained for the 5 years hydropower operation 
emphasizing on the superiority of the proposed methods to the existing methods for the 
problem considered in this paper. 
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Figures (1) to (6) compares variation of the minimum solution costs obtained by the UBB-
BC and CBB-BC algorithm for different operation periods versus the number of function 
evaluation for the simple and hydropower operations. It is clearly seen that the cost of the 
solutions obtained by the proposed CBB-BC algorithm always stays lower than those of 
original UBB-BC algorithm with the difference increasing for the larger operation periods. 

 

 
Figure 1. Convergence curve of minimum solution of water supply operation over 60 periods 

 

 
Figure 2. Convergence curve of minimum solution of hydropower operation over 60 periods 
 

 
Figure 3. Convergence curve of minimum solution of water supply operation over 240 periods 
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Figure 4. Convergence curve of minimum solution of hydropower operation over 240 periods 
 

 
Figure 5. Convergence curve of minimum solution of water supplyoperation over 480 periods 

 

 
Figure 6. Convergence curve of minimum solution of hydropower operation over 480 periods 
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5. CONCLUDING REMARKS 
 

In this paper, the newly proposed method of Big-Bang Big Crunch algorithm was used for 
the optimal solution of reservoir operation problems for the first time. A constrained 
formulation of this algorithm named Constrained Big Bang-Big Crunch (CBB-BC) wasalso 
proposed to improve accuracyand convergence characteristics of the method. In the 
constrained version, all the explicit constraints of the problem are enforced during the 
solution construction so that the BB-BC search is only carried out in the feasible region of 
the problem search space. Efficiency and accuracy of the original BB-BC referred to here as 
Unconstrained Big Bang-Big Crunch (UBB-BC) and the proposed CBB-BC for the optimal 
operation of reservoirs systems are tested against water supply and hydropower operation of 
“Dez” reservoir in Iran for three operation periods and the results are presented and 
compared to those obtained by other meta-heuristic approaches. The results indicated that 
the proposed methods and in particular the CBB-BC algorithm is very efficient and 
successful in obtaining near optimal solution for the problems considered. 
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