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ABSTRACT 
 

A new meta-heuristic method, based on Neuronal Communication (NC), is introduced in 

this article. The neuronal communication illustrates how data is exchanged between neurons 

in neural system. Actually, this pattern works efficiently in the nature. The present paper 

shows it is the same to find the global minimum. In addition, since few numbers of neurons 

participate in each step of the method, the cost of calculation is less than the other 

comparable meta-heuristic methods. Besides, gradient calculation and a continuous domain 

are not necessary for the process of the algorithm. In this article, some new weighting 

functions are introduced to improve the convergence of the algorithm. In the end, various 

benchmark functions and engineering problems are examined and the results are illustrated 

to show the capability, efficiency of the method. It is valuable to note that the average 

number of iterations for fifty independent runs of functions have been decreased by using 

Neuronal Communication algorithm in comparison to a majority of methods. 
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1. INTRODUCTION 
 

For decades, extensive researches have been implemented to find the optimum solution of 

engineering problems. The gradient based classical methods are not capable of solving new 

problems, especially when the derivatives of a fitness function do not exist. Therefore, the 

meta-heuristic methods which use natural concepts have been introduced as the new 

efficient solutions. In these methods, Nature is assumed as a guideline. Similar to the radar, 

which has been invented based on the behaviour of a bat, new optimization methods are 

defined using such natural events. Dorigo et al. [1] used ant colony behaviour and Eberhart 

and Kennedy [2] utilized birds' immigration to find the best solution in the search domain 
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for mathematical problems.  

The modeling of natural phenomenon in conjunction with stochastic laws is a common 

criterion of meta-heuristic methods [3]. These methods use a natural event as an idea to 

provide a new optimization algorithm. For example, Holland [4] and Goldberg [5] proposed 

Genetic Algorithm (GA), which is based on evolutionary biological process. Kennedy and 

Eberhart [6] introduced Particle Swarm Optimization (PSO) according to the birds’ 

migration. As another example, Kirkpatrick et al. [7] introduced Simulated Annealing (SA) 

upon natural material modeling. Some other meta-heuristic methods have been proposed by 

Fogel et al. [8], De Jong [9], Koza [10]. Glover [11] proposed Tabu search algorithm and 

Rashedi [12] introduced the gravity search algorithm. Kaveh and Talatahari [13] put 

forward the charged system search.  

This article is established based on the concept of Neuronal Communication (NA). The 

neuronal communication includes receiving excitation, data analysis and making a suitable 

response. This method models the behaviour of neurons to find the global minimum. This model 

has been proved to be efficient in nature, so it could be the same in engineering problems. 

 

1.1 Definition of the neuronal communication 

Neuronal communication is a set of neurons with physical contact whose input and output 

signal create a recognizable circuit. The connection of neurons is an electrochemical 

process. The interface between neurons is called dendrite which uses synapse (Fig. 1) to 

connect the neurons. Another connector between neurons is the axon (Fig. 2) which works 

as an output connection. If the intensity of input signal exceeds a determined value 

(threshold), the neuron will send an action potential, as an output signal, from the axon 

hillock to neighbors. In this way, a permanent circuit is established among all neurons. 

Hence, the characteristics of a neuron may affect its neighbors and consequently all of the 

neural system. In response to an excitation, all neurons participate and behave as an 

integrated system. In simple words, a neuron receives data by some connections. After 

analyzing, if the result is acceptable, the neuron will send the response to other neurons. 

Mostly the limited numbers of neurons are in contact with each neuron. This fact decreases 

the data transmission and helps to improve the performance of the system. Because of 

neuronal communication, the neurons affect each other simultaneously and the final 

response depends on the characteristics of all neurons. 

 

 
Figure 1. Components of a neuron 
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Figure 2. The pattern of neuronal connections  

 

In a population-based optimization method, there are independent agents whose inputs 

including fitness function values, are specified. If some efficient connections are provided 

among agents, the convergence of the algorithm to the global minimum can be improved. 

As a result, each agent can be assumed as a neuron which has neuronal communication with 

its neighbors. As aforementioned, the neuron gets inputs from the neighbors. After 

analyzing, if the result is acceptable, the final result will be sent to the directly connected 

neurons (neighbors). The method is going to find the global minimum, so neurons should 

gradually move to find the new better location. Unlike the natural neurons, the neurons in 

this method do not have fixed location and they approach to the global minimum. Because 

of permanent movement, the neighbors must frequently change their location. 

As mentioned, when the intensity of inputs reaches a specified level, the action 

potential (response) is sent to the neighbors. Consequently, the acceptance criterion of 

the new solution, in this method, can be the improvement of the fitness function value.  
Similar to natural neurons, a small numbers of neighbors are connected to each neuron. 

This concept is considered in the process of the algorithm. In such a way that, the data 

transmission rate decreases and all agents are connected directly or indirectly. Each neuron 

may affect the convergence path of others although they may not be connected directly. In 

the next sections, the components of the algorithm are illustrated and then some numerical 

examples are examined to show the efficiency and performance of the algorithm.  

 

 

2. NEURONAL COMMUNICATION ALGORITHM 
 

At first stage of the algorithm, it is assumed that some neurons are randomly distributed in 

the search space and each one is connected to some neighbors (Fig. 3). Next, the fitness 

function value of all agents is determined. Actually, in each step of the iteration, if the 
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neuronal communication method could find the new suitable location for neurons, the 

algorithm would probably converge to the global minimum. Finding a new suitable location 

for the ith neuron is the purpose of the method. Besides, in the algorithm, each neuron can 

inform neighbors about its location and its fitness function value. This information is the 

only guidance of neurons movement. The interaction between each neuron and the neuronal 

population can only be transmitted by the neighbors. This interaction is in accordance with 

the following procedure:  

 The neighbors send their information, including the location and the fitness function 

value, to the ith neuron.  

 If the fitness function value of the jth neighbor is less than its counterpart of the ith 

neuron, the ith neuron will tend to approach the jth neighbor.  

 Conversely, if the fitness function value of the jth neighbor is greater than the ith neuron's, 

the ith neuron will tend to get away from the jth neighbor.  

In this way, the ith neuron moves from a location with a higher fitness function value to a 

location with the lower one.  

If the fitness function value of the jth neighbor is considerably less than the other 

neighbors, the ith neuron should tend towards it with the corresponding magnitude. 

Therefore, the method is capable of conducting the neuron to the better location using the 

weighted function in accordance with the fitness function value of its neighbors.  

As a result, the jth neighbor conducts ith neuron to a weighted path. The path can be 

presented with a vector which connects the ith neuron to the jth neighbor (the red arrows in 

Fig. 3). Clearly, if the ith neuron approaches the jth neighbor, the arrow should be drawn 

from i to j and vice versa. Ultimately, the normalized resultant vector of weighted paths (the 

bold black arrow in Fig. 3) shows the final movement path of the ith neuron.  

In this method, the movement of a neuron in a new iteration depends on the information 

of the previous one. It means the data of the current iteration participates in determining the 

new location of the neuron. It decreases the sensitivity of the method to the variation of 

neighbors. Hence, the information of each iteration should be saved for the next iteration. 

Because of constant movement of neurons, the neighbors may change frequently. 

Therefore, the new neighbors of a certain neuron should be selected in each iteration of the 

algorithm. The current version of the algorithm uses a weighted random function to select 

the new neighbors. In fact, the random selection approach decreases the probability of 

getting trapped in the local minima. In other words, if the ith neuron is going to be trapped in 

local minima, selecting new neighbors and getting new information help to change the path 

and converge to the global minimum.  

In Fig. 3, the neuronal communication of ith neuron and its neighbors are shown. The 

bold arrow indicates the movement direction of ith neuron in the new iteration. In this figure, 

fi and f are the fitness function value of ith neuron and its neighbors respectively. 
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Figure 3. The neuronal communication of i

th
 neuron  

 

In brief, the presented algorithm consists of four subroutines or functions, which create 

an adaptive structure to conduct the neurons to the global minimum efficiently. More 

precisely, in the first step of each iteration, the new neighbors of the ith neuron are selected 

randomly. Then, the new location of the ith neuron is obtained using fitness function value of 

the neighbors as aforementioned. Consequently, if the new location is better than the 

previous one, it will be considered as the new location of the ith neuron. 

The flowchart of Neuronal Communication algorithm is presented in Fig. 4. 

 

 
Figure 4. The flowchart of neuronal communication algorithm  
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In the next section, the components of the NC algorithm and its procedure are 

illustrated step by step. 
 

2.1 Details of neuronal communication algorithm  

The procedure of the NC algorithm, in accordance with the flowchart of Fig. 4, can be 

presented as follows. 

Step 1: Inputs and Random Population Generation. In the first step, the parameters of 

the algorithm are defined. They include the followings:  

Boundaries of search space (a≤X≤b), the maximum number of iterations (Ni), the initial 

and ultimate number of population (Nns, Nne), the initial and ultimate number of neighbors 

(Nbs, Nbe), the number of guidance group members (m), the number of randomly generated 

neurons in each iteration (q) and constant coefficients (a1, a2, a3, a4).  

The number of neuronal population and neighbors could be changed in each step of the 

algorithm. A dynamic number of population is required in the algorithm process. Actually, 

in some first iterations NC needs the maximum number of population; however, the number 

of population begins to decrease when the iteration number increases, or when the algorithm 

begins to converge to the final result. The dynamic size of population decreases the cost of 

calculation while the effects on the convergence of the algorithm are negligible. At its 

simplest form, a linear function is utilized to determine the number of population (Nn) and 

neighbors (Nb), based on the number of iterations. The suggested values of parameters are as 

Eqs. (1a)-(1c).  

 

(1a) 0.1 0.8ns ne nsN N N   

(1b) 5 0.3 , 3 0.1bs ns be nsN N N N     

(1c) 3 30 , 1 20m q     

 

The first generation is distributed using Eq. (2).  

 

(2) 1 ( )X a b a rand     

 

where, a  and b  are vectors containing boundaries of variables, and rand is a uniform 

random number generator, which generate real numbers in the range of [0, 1]. 
1X is the 

vector of neuron location in the first iteration of the algorithm. The superscript shows the 

iteration number.  

After first population generation, its corresponding fitness function should be saved in F.  

Step 2: Guidance Group Function. The aim of this step is to utilize the pattern of 

neurons with the best results. This set of neurons is called guidance group.  

During the process of the algorithm, some neurons have no acceptable results and 

could not converge to a better solution. They increase the cost of computation, while 

have no positive effect on the convergence. A new function is introduced herein, which 

moves these neurons to some suitable locations. This process improves the performance 

of the algorithm.  
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New locations are determined using the mean and standard deviation of the location of 

the guidance group. Although in the first step of the algorithm neurons were randomly 

distributed using the uniform random distribution, in the second step the neurons distribute 

according to the normal distribution data, which is based on the guidance group data. The 

guidance group (im) consists of m neurons with the best results. The new locations are used 

in order to relocate the neurons with the worst results (ima).  

In simple words, in each iteration, the algorithm estimates the location of the neurons 

with the best results to move the neurons with the worst results to some better locations. The 

applied functions are shown in Eq. (3). 

 

(3) 1

[ ( )]
( ) (2 1)

[ ( )]

n

m n

ma
n

m

Mean X I
X i a rand

SD X I


 



 
      

 

 

 

where, ( )n

mX I  shows the location of the guidance group. The Mean and SD are the mean 

and standard deviation functions respectively. ima indicates the set of neurons with the worst 

results. The results of the present study have shown that it is better to choose ima so that ima < 

0.05Nns. The coefficient a1 controls the distribution range of the new neurons. In the present 

version of the algorithm, a1 is in the range of [1, 5].  

Step 3: Neighbors Selection. In the third step, the neighbors of the ith neuron are 

selected using a random selector with cumulative weighted function (G). The neighbors are 

selected from the all neuronal population (R) except the neuron with the best result (im), the 

neurons provided by guidance group (ima) and ith neuron. The neighbors’ selection is done 

using Eqs. (4)-(5b). Besides, the weight of jth neuron is within [0, 1] as Eq. (4).  

 

(4) 

max

max min

1

, , { , , }
j j

j j m maNn

t

t

F F w
w for j t R i i i

F F
w






   




 

 

where, Fmax and Fmin are the maximum and minimum of the fitness function of the neurons 

respectively.  

The cumulative weighted function G is an array. Each element of this array contains the 

summation of the weight of jth neuron and all its previous neurons in the global numbering 

of neurons. The array can be produced using Eqs. (5a) and (5b): 

 

(5a) 1 1G   

(5b) 1 2,3,... { , , }j j j m maG G for j R i i i      

 

For selecting each neighbor of the ith neuron, the minimum value of j should be 

determined in such a way that rand ≤ Gj. Here, 1,2,3,... { , , }m maj R i i i    and rand 

is a uniform random number generator in the range of [0, 1]. Indeed, for obtaining the 

neighbors of the ith neuron (Ib), this procedure should be repeated Nb times.  
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The random selection of the neighbors decreases the probability of being trapped in a 

local minimum. In fact, when the ith neuron is going to be trapped in local minima, changing 

the neighbors and getting new data help the neuron to escape from the situation.  

Step 4: New Agent Generation. In the fourth step, a new location is proposed for the ith 

neuron using the neuronal communication method as aforementioned. If the fitness function 

value of the proposed location is less than the previous one, this location will be the new 

location of the ith neuron.  

This step consists of two subroutines or functions. The exponential weighting function H 

increases the efficacy of the neurons with better fitness function value to enhance the 

convergence of the algorithm. This function guides the local search of the algorithm to find 

the global minimum.  

Moreover, the vector cX  represents the steady movement of the algorithm procedure. 

This vector is provided using the location of neighbors in the previous iteration. It helps to 

increase the search capability of the method. Thus, this vector plays the role of the global 

search of the algorithm.  

The exponential weighting function H is obtained by Eq. (6). 

 

(6) 
2

2

1

,
j

b

t

W

j bN
W

t

a
H for j t I

a


 


 

 

where, a2 is the base of the exponential function and is assumed to be in the range of [1, 5].  

The attraction or repulsion caused by neighbors is applied along the line between each 

neighbor and the ith neuron. This direction can be represented by the unit vector U in 

accordance with Eq. (7). 

 

(7) ( )

n n

j i

j i j b
n n

j i

X X
U Sign F F for j I

X X


   


 

 

where, Sign(x) indicates the sign of x. n

iX  shows the location of the ith neuron in the nth 

iteration and 
n

iX  is the norm of the location vector n

iX . Ib shows the neighbors of the ith 

neuron. The vector cX  which represents the continuous movement in the algorithm is 

defined as Eq. (8). 

 

(8) 1 1

1

. . ,
bN

n n

c j i j j b

j

X H X X U j I 



    
 

Here, 1n

iX  is the location of the ith neuron in the n-1th iteration and n shows the iteration 
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number of the method. Nb indicates the number of the neighbors of the ith neuron.  

The direction vector 1T  and step length T2 are defined according to Eqs. (9) and (10).  

 

(9) 1 1 2

1

.
bN

c
j j b

j c

X
T C H U C for j I

X

      

(10) 2 1 2

1

.
bN

n n

j i j c b

j

T C H X X C X for j I


       

 

The coefficients C1 and C2 are suggested as Eq. (11a) and (11b).  

 

(11a) 
3

1 2
i

a n

NC a



  

(11b) 
4

2 2
i

a n

NC a

 

  
 

where, Ni is the maximum number of iterations. a3 and a4 are some constant coefficients, 

which are assumed to be in the range of [1, 5] and [1, 10] respectively.  

In these equations, 1T  represents the direction vector and T2 is the step length of ith 

neuron movement. It is obtained using the neighbors of the ith neuron in the nth and n-1th 

iterations. The coefficients C1 and C2 help to convert the global search of the method to the 

local search. Hence, these values have a profound impact on the convergence of the 

algorithm. More accurately, C1 is an incremental factor that amplifies the local search of the 

algorithm. On the other hand, C2 is a decreasing factor and inspires the global search. In the 

algorithm procedure, the global search is gradually converted to the local search. 

Consequently, a new exponential function is suggested in order to improve the process.  

Finally, the new suggested location of the ith neuron is obtained as Eq. (12).  

 

(12) 
11

2

1

n n

i i

T
X X rand T

T

      

 

where, 1n

iX   and n

iX  are the suggested and present location of the neuron, respectively.  

Notably, the location 
1n

iX 
 will be the new location of the ith neuron only if the fitness 

function value of 1n

iX   is less than the value of the present location n

iX . In each iteration, 

the process of neighbors selection and finding the new location of each neuron should be 

repeated.  

Additionally, the process of the algorithm starts with the global search and tends to the 

local search. The global search needs the larger number of agents than the local one. Hence, 

the number of population is dynamic and may change during the algorithm. Therefore, the 
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cost of calculation decreases without noticeable reduction in the convergence capability.  

Step 5: Random Neuron Generator. To prevent a neuron from being trapped in local 

minima, a stochastic function is utilized to generate new random neurons. This is what 

exactly happens in the fifth step of the NC algorithm. This function replaces the neurons 

with the worst fitness function (Ix) with the new random neurons according to Eq. (13). 

 

(13) ( ) ( )n

xX I a b a rand     
 

Here, a  and b  are vectors containing boundaries of variables in the search space.  

In this way, the method utilizes a set of functions based on the neuronal communication 

to converge into the global minimum. Finally, the algorithm continues until one of the 

following termination criteria is true: 

 The current iteration number of the algorithm exceeds the maximum allowed number 

of iterations. 

 The sequence of the best fitness function values converge so that the difference 

between the best values of two immediate iterations falls into a predefined tolerance 

value.  

 

 

3. ENGINEERING BENCHMARK PROBLEMS 
 

In this section, the efficiency of the neuronal communication algorithm is evaluated and the 

results of some different methods are compared with the present method.  

 

3.1 Unconstrained problems 

For unconstrained optimization problems, the algorithm is compared with different versions 

of GA [14] and the methods CSS [13] and RO [15] in various mathematical problems [13]. 

The benchmark problems are introduced in Table 1 and the compared results are shown in 

Table 2. 

 
Table 1: The Specifications of benchmark problems [13] 

Fmin Domain F(x) Name 

-0.352386 [-10,10]
2
 

4 2 2

1 1 1 2

1 1 1 1

4 2 10 2
x x x x    Aluffi-

Pentiny (AP) 

0.000000 [-100,100]
2
 

2 2

1 2 1 2

3 4 7
2 cos(3 ) cos(4 )

10 10 10
x x x x      Bohachevsky-

1 (Bf1) 

0.000000 [-50,50]
2
 

2 2

1 2 1 2

3 3
2 cos(3 )cos(4 )

10 10
x x x x     Bohachevsky-

2 (Bf2) 

0.000000 [-10,10]
2
 

2 2

1 2( 5) ( 5)x x    
Becker and 

Lago 

0.397887 
1

2

[ 5,10]

[0,15]

x

x

 


 2 2

2 1 1 12

5.1 5 1
( 6) 10(1 )cos( ) 10

4 8
x x x x

  
       Branin 
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-1.031600 [-5,5]
2
 

2 4 6 2 4

1 1 1 1 2 2 2

1
4 2.1 4 4

3
x x x x x x x      Camel 

-0.400000 [-1,1]
4
 

2

1 1

1
cos(5 )

10

n n

i i

i i

x x
 

   
Cosine 

Mixture 

(CM) 

0.000000 [-5.12,5.12]
3
 

2 2 2

1 2 3x x x   DeJoung 

-1.000000 
[-1,1] 

n= 2, 4, 8 
2

1

exp( 0.5 )
n

i

i

x


    
Exponential 

(EXP2, 

EXP4, EXP8) 

3.000000 [-2,2]
2
 

2 2 2

1 2 1 1 2 1 2 2

2 2 2

1 2 1 1 2 1 2 2

[1 ( 1) (19 14 3 14 6 3 )]

[30 (2 3 ) (18 32 12 48 36 27 )]

x x x x x x x x

x x x x x x x x

        

      

 

Goldstein and 

price 

0.000000 [-100,100]
2
 

22
2

1 1

1 cos( )
1

200
i

i

i i

x
x

i 

    Griewank-2 

-3.862782 [0,1]
3
 

4 3
2

1 1

exp ( )i ij j ij

i j

c a x p
 

 
   

 
   

3 10 30 1 0.3689 0.117 0.2673

0.1 10 35 1.2 0.4699 0.4387 0.747
; ;

3 10 30 3 0.1091 0.8732 0.5547

0.1 10 35 33.2 0.03815 0.5743 0.8828

a c p

     
     
       
     
     
     

 
Hartman-3 

-3.322368 [0,1]
6
 

4 6
2

1 1

exp ( )i ij j ij

i j

c a x p
 

 
   

 
   

10 3 17 3.5 1.7 8 1

0.05 10 17 0.1 8 14 1.2
;

3 3.5 1.7 10 17 8 3

17 8 0.05 10 0.1 14 3.2

a c

   
   
    
   
   
   

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

p

 
 
 
 
 
 

 

Hartman-6 

-2.000000 [-1,1]
2
 

2 2

1 2 1 2cos(18 ) cos(18 )x x x x    Rastrigin 

0.000000 [-30,30]
2
  

1
2 2 2

1

1

100( ) ( 1)
n

i i i

i

x x x






    Rosenbrock 

 

It is valuable to note that Tsoulos [14] studied some different versions of Genetic 

Algorithm which are introduced as GEN, GEN-S, GEN-S-M and GEN-S-M-LS. The method 

CSS [13] utilized the charged system principles to find global minimum. Similarly, the 

method RO [15] introduced a new meta-heuristic algorithm using the Snell’s light refraction 

law. 

The perspective view and related contour lines of some benchmark functions are shown in 

Fig. 5.  
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Table 2: Performance comparison for the benchmark problems  

Function GEN GEN-S GEN-S-M GEN-S-M-LS CSS RO NC 

AP 1360 (0.99) 1360 1277 1253 804 331 304 

Bf1 3992 3356 1640 1615 1187 677 394 

Bf2 20234 3373 1676 1636 742 582 353 

BL 19596 2412 2439 1436 423 303 314 

Branin 1442 1418 1404 1257 852 463 355 

Camel 1358 1358 1336 1300 575 332 250 

CM 2105 2105 1743 1539 1563 802 678 

Dejoung 9900 3040 1462 1281 630 452 236 

Exp2 938 936 817 807 132 136 75 

Exp4 3237 3237 2054 1496 867 382 252 

Exp8 3237 3237 2054 1496 1426 1287 820 

Goldstein and Price 1478 1478 1408 1325 682 451 272 

Griewank 18838 (0.91) 3111 (0.91) 1764 
1652 

(0.99) 
1551 1091 (0.98) 1078 

Hartman3 1350 1350 1332 1274 860 - 472 

Hartman6 2562 (0.54) 2562 (0.54) 
2530 

(0.67) 

1865 

(0.68) 
1783 - 1459 

Rastrigin 1533 (0.97) 1523 (0.97) 1392 1381 1402 1013 (0.98) 1289 

Rosenbrock 9380 3739 1675 1462 1452 - 1132 

 

The values in Table 2 indicate the average numbers of function evaluation in 50 

independent runs. The number in parenthesis represents the ratio of successful runs in which 

the method has found the global minimum. The predefined accuracy of the method is taken 

as
4

min 10finalf f    . The absence of the parentheses shows that the algorithm has been 

successful in all independent runs. It can be seen that only CSS and NC algorithm have been 

unconditionally successful in all fifty runs of all benchmark problems. 

 

3.1.1 Comparing results 

The method GEN-S-M-LS has better results than the other methods, which are based on 

GA. This method utilizes some auxiliary mechanisms such as an improved stopping law, the 

new mutation mechanism and an iterative approach in the local search. On the other hand, 

the methods CSS and RO improve the results more effectively than GA based methods. 

Totally, the Neuronal Communication algorithm (NC) converged to the global minimum 

faster than RO, CSS and GA based methods.  
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Figure 5. A perspective view and related contour lines for some of function in two dimensional 

forms. (a) Aluffi-Pentiny. (b) Bohachevsky-1. (c) Bohachevsky-2. (d) Becker and Lago 
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3.2 Constrained problems 

3.2.1 A pressure vessel design problem 

In this section, the optimal design of the cylindrical vessel, displayed in Fig. 6, is considered 

as a constrained optimization problem. The objective is to minimize the total cost including 

the cost of material, forming and welding [16]. This function is shown in Eq. (14).  

 

(14) 2 2 2

cost 1 3 4 2 3 1 4 1 3( ) 0.6224 1.7781 3.1661 19.84f X x x x x x x x x x     
 

where, x1 is the thickness of the shell (Ts), x2 is the thickness of the head (Th), x3 the inner 

radius (R) and x4 is the length of cylindrical section of the vessel (L). Ts and Th are integer 

multiples of 0.0625 inch and R and L are real numbers. 

 

 
Figure 6. A Schematic shape of the pressure vessel 

 

The constraints and the design space can be stated as Eq. (15). 

 

(15) 
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 

 

 

 

1 1 3

2 2 3
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3

( ) 240 0

g X x x

g X x x

g X x x x

g X x

 

   

   

    

  

 

 

The constraints are applied to the algorithm using the penalty function method. The best 

results of various developed methods and corresponding statistical simulation results are 

shown in Table 3 and Table 4, respectively. The results are obtained from ten independent 

runs of the methods. Although some methods such as Montes and Coello [22] and Kaveh 

and Talatahari [23] have better results than the others, the Neuronal Communication method 

(NC) provides the best results. The standard deviation value of the NC algorithm is not the 

best, for instance in comparison to Coello [19]. However, the mean value of the NC 

algorithm has an error of about 0.6%, according to the minimum value of cost function, 

while [19] estimates the cost function with 3.9% of error. Besides, the values of mean and 

standard deviation of the NC algorithm are comparable to the other methods. 
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Table 3: Optimum results for the pressure vessel  

Methods 
Optimal Design Variable 

fcost 
x1 (Ts) x2 (Th) x3 (R) x4 (L) 

Sandgren [16] 1.125000 0.625000 47.700000 117.701000 8129.1036 

Kannan and Karamer [17] 1.125000 0.625000 58.291000 43.690000 7198.0428 

Deb and Gene [18] 0.937500 0.500000 48.329000 112.679000 6410.3811 

Coello [19] 0.812500 0.437500 40.323900 200.000000 6288.7445 

Coello and Montes [20] 0.812500 0.437500 42.097398 176.654050 6059.9463 

He and Wang [21] 0.812500 0.437500 42.091266 176.746500 6061.0777 

Montes and Coello [22] 0.812500 0.437500 42.098087 176.640518 6059.7456 

Kaveh and Talatahari [23] 0.812500 0.437500 42.098353 176.637751 6059.7258 

NC (the current study) 0.812500 0.437500 42.098446 176.636596 6059.1313 

 
Table 4: Statistical results of different methods for the pressure vessel  

Methods Best Mean Worst Standard Deviation 

Sandgren [16] 8129.1036 N/A N/A N/A 

Kannan and Karamer [17] 7198.0428 N/A N/A N/A 

Deb and Gene [18] 6410.3811 N/A N/A N/A 

Coello [19] 6288.7445 6293.8432 6308.1497 7.4133 

Coello and Montes [20] 6059.9463 6177.2533 6469.3220 130.9297 

He and Wang [21] 6061.0777 6147.1332 6363.8041 86.4545 

Montes and Coello [22] 6059.7456 6850.0049 7332.8798 426.0000 

Kaveh and Talatahari [23] 6059.7258 6081.7812 6150.1289 67.2418 

NC (the current study) 6059.1313 6093.2716 6203.7628 40.9574 

N/A: Not available. 

 

3.2.2 A 10-bar planar truss 

The optimal design of the 10-bar truss, shown in Fig. 7, is considered as another example of 

constrained optimization problem. More accurately, the weight of the truss is considered as 

the objective function. In this problem, the stress limit of the members is σ0= ±172.37 MPa 

(25 ksi). The nodal displacements in the vertical direction are limited to ±5.08 cm (2.0 in) 

and the density of the material is ρ= 2767.99 kg/m3 (0.1 lb/in3). The minimum cross section 

and the modulus of elasticity are A0= 0.6451 cm2 (0.1 in2) and E= 6.89×104 MPa (104 ksi), 

respectively.  

 

 
Figure 7. A 10-bar planar truss [24]  
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Two different load cases are considered herein. In the first case, P1= 444.82 kN (100 

kips) and P2= 0. Additionally, in the second case, P1= 667.233 kN (150 kips) and P2= 

222.411 kN (50 kips). In Tables 5 and 6, the results of the suggested method are compared 

with various methods and the improvement of the results is shown. The results are obtained 

from twenty independent runs of the methods. Although, some methods such as Lamberti 

and Pappalettere [27] and Sedaghati [28], in case-1, and Rizzi [32] and John et al. [33], in 

case-2, approached the minimum weight of the truss, the present study results the best value 

among the other methods. 

 
Table 5: Comparison of optimum designs of 10-bar truss (case-1)  

Member 

Number 

Schmit 

and 

Farshi 

[24] 

Schmit 

and 

Miura 

[25] 

Venkayya 

[26] 

Lamberti 

and 

Pappalettere 

[27] 

Sedaghati 

[28] 

Kaveh 

and 

Rahami 

[29] 

Li et al. 

[30] 

Farshi 

and 

Ziazi 

[31] 

NC 

(the 

present 

study) 

1 33.430 30.670 30.420 

* 

30.521 30.667 30.569 30.520 30.528 

2 0.100 0.100 0.128 0.100 0.100 0.100 0.100 0.100 

3 24.260 23.760 23.410 23.199 22.872 22.974 23.204 23.205 

4 14.260 14.590 14.910 15.222 15.344 15.148 15.223 15.218 

5 0.100 0.100 0.101 0.100 0.100 0.100 0.100 0.100 

6 0.100 0.100 0.101 0.551 0.463 0.547 0.551 0.551 

7 8.388 8.578 8.696 7.457 7.479 7.493 7.466 7.457 

8 20.74 21.070 21.080 21.036 20.965 21.159 21.034 21.036 

9 19.690 20.960 21.080 21.528 21.702 21.556 21.529 21.522 

10 0.100 0.100 0.186 0.100 0.100 0.100 0.100 0.100 

Weight (lb) 5089.00 5076.85 5084.90 5060.88 5060.85 5061.90 5061.03 5061.40 5060.85 

* Not mentioned. 

 
Table 6: Comparison of optimum designs of 10-bar truss (case-2)  

Member 

Number 

Schmit and 

Farshi [24] 

Schmit and 

Miura [25] 

Venkayya 

[26] 

Rizzi 

[32] 

John et 

al. [33] 

Li et al. 

[30] 

Farshi and 

Ziazi [31] 

NC (the 

present 

study) 

1 24.290 23.550 25.190 23.530 23.590 23.743 23.527 23.530 

2 0.100 0.100 0.363 0.100 0.1000 0.101 0.100 0.100 

3 23.350 25.290 25.420 25.290 25.250 25.287 25.294 25.290 

4 13.660 14.360 14.330 14.370 14.370 14.413 14.376 14.368 

5 0.100 0.100 0.417 0.100 0.100 0.100 0.100 0.100 

6 1.969 1.970 3.144 1.970 1.970 1.969 1.969 1.969 

7 12.670 12.390 12.080 12.390 12.390 12.362 12.404 12.398 

8 12.540 12.810 14.610 12.830 12.800 12.694 12.824 12.852 

9 21.970 20.340 20.260 20.330 20.370 20.323 20.330 20.296 

10 0.100 0.100 0.513 0.100 0.100 0.103 0.100 0.100 

Weight (lb) 4691.84 4676.96 4895.60 4676.92 4676.93 4677.70 4677.80 4676.89 
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4. CONCLUSIONS 
 

A new meta-heuristic algorithm has been introduced in this article based on the Neuronal 

Communication. The Neuronal Communication represents the data transmission pattern 

between neurons in dealing with an external excitation to provide the suitable response. In 

this method, the neurons are considered as agents and the pattern of data exchange between 

neurons is utilized to find the global minimum. In this pattern, each neuron is connected to 

its neighbors directly and to the others indirectly. In fact, not only the number of neighbors 

for each neuron is not equal to the total number of population, but the number of neighbors 

for each neuron changes dynamically in each iteration. The results have showed that the cost 

of calculation in each iteration is less than the other comparable methods. Additionally, a 

dynamic selection of neighbors reduces the probability of being trapped in local minima. 

Also, some new weighting functions have been defined, which improve the capability and 

performance of the algorithm. The weights are defined using the fitness function value of 

the neurons. This algorithm is examined for various constrained and unconstrained 

benchmark functions and the advantages of the presented method are compared with the 

other meta-heuristic counterparts. In constrained benchmark problems, it has been shown 

that NC has been unconditionally successful for fifty independent runs, while some other 

methods failed in specific benchmark problems. Moreover, in constrained problems, it has 

been showed that the NC algorithm not only is capable of finding the global minimum, but 

its standard deviation, in a statistical analysis, is comparable to some other methods in the 

literature. 
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