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ABSTRACT 
 

In this study, the complex behavior of steel encased reinforced concrete (SRC) composite 

beam–columns in biaxial bending is predicted by multilayer perceptron neural network. For 

this purpose, the previously proposed nonlinear analysis model, mixed beam-column 

formulation, is verified with biaxial bending test results. Then a large set of benchmark 

frames is provided and P-Mx-My triaxial interaction curve is obtained for them. The 

specifications of these frames and their analytical results are defined as inputs and targets of 

artificial neural network and a relatively accurate estimation model of the nonlinear behavior 

of these beam-columns is presented. In the end, the results of neural network are compared 

to some analytical examples of biaxial bending to determine the accuracy of the model. 
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1. INTRODUCTION 
 

SRC steel-concrete composite frames are highly efficient and economic structures that 

directed less attention than concrete and steel structures due to the complexities in their 

behavior analysis. The features of steel structures include high strength, ductility and fast 

implementation. Also concrete structures are cost effective and durable and have high 

resistance to fire. Composite structures by using steel and concrete in the appropriate 

location, utilize the features of both groups. SRC columns include higher resistance to 
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reinforced concrete columns in the same section, resistance against fire and corrosion of 

steel, more unbraced length in tall columns and more resistance against explosion and strike. 

Different models are presented for analyzing the behavior of composite beam-columns. 

Three types of modeling are possible for these structures. The first model is a continuous 

three-dimensional analysis which is very accurate. In this analysis, concrete and steel are 

modeled with brick and shell elements and contact surface of two materials are modeled 

with gap and frictional elements. Schneider [1], Johansson and Gylltoft [2],Varma et al. [3], 

Hu et al. [4] used this model to analyze composite beam-columns. Despite high accuracy, 

heavy cost of calculations makes this method impractical in analysis of frames. The second 

model considers the nonlinear behavior of material only at the end of the members' joints 

and it is called concentrated plasticity model. Hajjar and Gourley [5], El-Tawil and Deierlein 

[6], Inai et al. [7] used this model to examine the behavior of composite beam-columns. The 

third model is distributed plasticity model which provides nonlinear behavior of materials at 

integration points of member elements. This method has higher accuracy compared to 

concentrated plasticity. Also it requires less time to analyze than a continuous three-

dimensional model. Hajjar et al. [8], Aval et al. [9], Varma et al. [3], Tort et al. [10], Denavit 

and Hajjar [11], Liang et al. [12] and Denavit et al. [13] have used distributed plasticity 

model to analyze composite beam-columns. Among these models Denavit and Hajjar [11], 

Liang et al. [12] have used three-dimensional model for biaxial bending analysis of these 

beam-columns. 

Many different experiments have been conducted with regard to investigation of behavior 

and biaxial bending resistance of composite beam–columns. Virdi and Dowling [14] tested 

ultimate strength of SRC beam-columns in biaxial bending. In these experiments, 9 concrete 

beam-column samples with central core in the form of H in biaxial eccentricity and lengths 

were examined. In 1984, Morino et al. [15] conducted laboratory studies on elasto-plastic 

behavior of SRC composite beam-columns by applying biaxial eccentricity loading. In these 

experiments, eccentricity effects, the angle between the loading point and the main axis and 

slenderness ratio on load-displacement behavior and maximum load capacity were 

performed. Munoz and Hsu [16] applied curvilinear axial force and biaxial bending on four 

small scale concrete beam-columns with I-shaped steel core. The sections include one short 

column and three slender columns with square sections. 

Different types of artificial neural networks have been used in various civil engineering 

subjects, including estimation of beam–columns behavior. These networks with nonlinear 

behavior and large number of parameters are able to accurately estimate different issues. 

Kaveh and Iranmanesh [17-19] performed a comparative study of backpropagation and 

improved counter propagation neural networks in structural analysis and optimization. 

Ahmadi et al. [20, 21] predicted the capacity of short and long circular composite columns 

filled with concrete under axial load. The input data are laboratory results and the effects of 

yield stress, tube wall thickness, column length, concrete strength and column dimensions 

have been investigated. Kaveh et al. [22, 23] predicted the moment-rotation characteristic 

for saddle-like and semi-rigid connections using FEM and BP neural networks. Afaq et al. 

[24] examined the effect of steel fibers on load bearing capacity of RC beams using artificial 

neural network. The database of neural networks has been extracted from previous results of 

experiments and after validation, this network was used for a parametric research on the 

effect of various parameters related to steel fibers, material properties, and cross sectional 
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geometry. By analyzing output estimates, it was determined that this neural network can 

quantify the effects of different parameters for RC load capacity. Kaveh and Servati [25, 26] 

used artificial neural networks for the purpose of analysis and design optimization of double 

layer grids. Also Kaveh and Raiessi Dehkordi [27] investigated the application of artificial 

neural networks in predicting the deformation of domes under wind load. Kumar and Yadav 

[28] performed beam–columns buckling analysis using mathematical model and neural 

network of multilayer perceptron, and compared the output results of neural network with 

Euler's mathematical formula. Rofoei et al. [29] estimated the vulnerability of the concrete 

moment resisting frame structures using artificial neural networks. Kotsovou et al. [30] 

predicted the behavior of circumferential RC beam–columns connections using neural 

network. The neural network predictions for failure mode and load bearing capacity of these 

connections confirmed the shortcomings in the regulation which was previously identified 

by analytical methods. Sadowski et al. [31] performed and compared non-destructive 

detection of adhesion tension of a concrete substrate layer added to concrete layer with 

variable thickness using a neural network and with different algorithms.  

There are only a few experiments on biaxial bending of composite beam–columns which 

are limited to axial forces and specific angles. Therefore, it is not possible to create a neural 

network using laboratory results to predict their behavior. Also due to complexity and time-

consuming analytical methods, it is not possible to easily use them for researchers. For this 

reason, in this study after re-verification of composite columns model of Denavit and Hajjar 

[32] with the laboratory results of biaxial bending, a large set of square SRC composite 

columns with different lengths and dimensions created and for each one the three 

dimensional P-Mx-My interaction curve was designed. After that, by using multilayer 

perceptron neural network, a fairly accurate estimate for three-dimensional behavior of these 

columns was presented and the neural network output was compared with analytical results 

to determine the accuracy of model. 

 

 

2. NONLINEAR ANALYSIS 
 

2.1 Constitutive relationships presented for composite sections 

Nonlinear behavior of material in cross section is followed at integral points within the 

element. The cycling comprehensive constitutive formulas for steel and concrete presented 

in the researches of Denavit and Hajjar [32] have been used. These models consider 

prominent features of each material and the interaction between them. 

Constitutive formulas between concrete and steel are selected in accordance with AISC 

360-16 [33] and ACI 318-14 [34] regulations. Therefore, in this study, the tension in 

concrete has been neglected and local buckling has not been considered. The method based 

on Chang and Mander [35] is used for the cyclic behavior of concrete. Also for uniform 

response of concrete strength Popovic equation [36] (equation 1) has been used. A schematic 

view of this relationship is presented in Fig. 1. The confined model of Mander [37] has been 

used to determine the increase of compressive strength and ductility. 
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(1a) 𝑦 =
𝑟𝑥

𝑟 − 1 + 𝑥𝑟
 

Popovic 

(1973) (1b) 𝑟 =
𝑛

𝑛 − 1
 

 

In these formulas, x is normalized strain and n is normalized module of elasticity. 

 

 
Figure 1. Constitutive formula presented by Popovic for uniform response of concrete 

 

In SRC columns, constitutive formula of elastic–perfectly plastic has been used to model 

the steel core. This formula is defined with initial stiffness and yield strength (Fig. 2). This 

model is suitable to be used in hot-rolled steel sections and armatures. 

 

 
Figure 2. elastic–perfectly plastic constitutive relationship for steel sections of SRC beam-

columns 

 

The members are modeled as fiber sections which present the structural behavior of each 

part of section. In SRC sections, concrete is considered to be highly confined between 

flanges of steel section. In this area, confining pressure is provided by steel section and 

lateral armatures. El-Tawil and Deierlein [6] presented a mechanism in which confined 
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pressure created by steel section is calculated by equation 2a, only along the y axis, by 

considering plastic moment capacity of the flange, shown in Fig. 5a. The distance between 

parabolic vertex and central line of steel section is defined with equation 2b. This area 

indicates the boundary between highly confined area and medium confined area. This 

parabolic area has been modeled in different directions of the steel section directly with 

different equations (Fig. 3b). The area between cover and parabolic shape is modeled in 

order to provide average behavior through using ke coefficient. 

 

 
(a)              (b) 

Figure 3. SRC fiber cross section (a) Different area division of SRC column section, (b) A 

sample of fiber section of SRC composite column 

 

(2a) 𝐹𝑙𝑦,ℎ𝑖𝑔ℎ = 𝐹𝑙𝑦,𝑚𝑒𝑑𝑖𝑢𝑚 +
𝑡𝑓
2𝐹𝑦𝑠

0.75(𝑏𝑓 − 𝑡𝑤)
2
 

(2b) 𝑧𝑎 = 0.50𝑏𝑓 − 0.25(𝑑 − 2𝑡𝑓) ≥ 0.50𝑡𝑤 

(2c) 𝑟𝑛,𝑝𝑜𝑠𝑡 = 0.75 

 

2.1 The formulation used in nonlinear analysis 

Beam elements are classified based on major unknown variables into three groups including 

displacement-based, force-based and the mixture of these two methods. In the deformation-

based method, or in other words stiffness method, elements consider joint deformations as 

major unknowns, Hajjar and Gourley [5], Aval et al. [9], Alemdar and White [38]. 

The deformations of element are calculated using interpolator functions. The equilibrium 

of the element is satisfied only in a variational state and internal forces of element do not 

accurately satisfy the equilibrium. This type of formulation is normally considered for use 

and expansion of simple nonlinear geometric behavior. Interpolator functions, which are 

commonly used for deformations, only model linear curvature distribution along the 

element. This is a very important limitation, especially when the plastic joints are formed 

which causes a highly nonlinear curvature distribution. In force-based method, or in other 

words softness method, the elements consider tensions as the major unknowns, De Souza 

[39], El-Tawil and Deierlein [6], Alemdar and White [38]. 

The forces are calculated along the length of elements using interpolator functions. The 

equilibrium of the element is certainly satisfied but compatibility of deformations in element 
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will be only satisfied in the variational state. Compared to element with displacement-based 

method, force-based elements are often time-consuming and have high computational costs. 

Elements mixed by element forces and joint displacements are considered as the major 

unknowns which allows the use of interpolator functions for deformation of elements and 

stresses along with the length of element, Nukala and White [40], Alemdar and White [38], 

Tort and Hajjar [10], Denavit and Hajjar [11]. 

Despite complexity of analysis process, which is usually longer than the methods based 

on displacement and force, the mixed method is a proper balance between estimation of 

nonlinear curves along the element and the ability to consider direct nonlinear geometric 

behavior. 

In this study, mixed beam element, implemented in the framework of OpenSees software 

by Denavit and Hajjar [11, 32] has been used for the nonlinear analysis of composite 

columns. 

 

2.2 Interaction curve 

By a set of complete nonlinear analysis, interaction curves of biaxial bending moment – 

axial forces for each section and each frame was created. An analysis was performed only 

with axial force to determine the critical axial load, then a set of analysis was carried out to 

apply constant axial load and incremental lateral load. In the case of zero axial load, section 

analysis was performed instead of frame analysis. In each analysis, the critical point is 

determined when the minimum eigenvalue is zero. In cases where this does not occur, the 

critical point is created when the maximum longitudinal strain in each section of each 

member reaches 0.05. At critical point, the amount of applied loads and internal forces is 

recorded, and it is possible to construct the interaction curve of first-order loads and 

interaction of second-order internal forces. A sample of these diagrams is shown for SRC 

sections and a frame in Fig. 4. 

 

 
Figure 4. P-Mx-My triaxial interaction curve for SRC-BBB-4 composite beam-column 
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3. COMPARING THE MODEL WITH BIAXIAL LABORATORY RESULTS 
 

The nonlinear model described in the previous section is compared and verified in Denavit 

and Hajjar [32] research with the existing laboratory results. In this section, the results of 

nonlinear analysis of SRC columns with biaxial bending tests are verified by Morino et al. 

[15] and Virdi and Dowling [14]. That is, P-Mx-My interaction diagram for the sections used 

in the tests is obtained by using nonlinear analysis. Because in tests the biaxial bending 

behavior is examined only in one axial load, three-dimensional interaction curve was cut at 

this axial load and Mx-My two-dimensional curve was obtained. In this case, the recorded 

moments in the lab was compared with analysis results. In table 3 the ratio of test results to 

analysis results is presented. Fig. 4 is an example of this comparison. 

Table 1 shows the specifications of concrete sections in tested SRC columns. These 

specifications include concrete strength, yield strength of the longitudinal and transverse 

armatures, columns dimensions, diameter of bars, the reinforcement spacing and concrete 

cover. Table 2 shows the specifications of steel sections used in SRC columns including 

steel yield strength, web and flange dimensions and their thickness. In table 3 the ratio of 

analysis results to test results is presented for these columns. The average ratio of analysis 

moment to test moment for these 13 samples is 1.0 and standard deviation is 0.08. The 

results clearly show the strong performance of nonlinear analysis. Figs. 5a and 5b show the 

Mx-My two-dimensional interaction diagram for samples A4-60 and H in axial loads of 

524.89 KN (118 kip) and 355.86 KN (80 kip). It should be noted that the naming of samples 

is based on a reference article. 

 
Table 1: The specifications of concrete section dimensions and materials of SRC composite 

columns 

Spec. H(mm) B(mm) fc(MPa) db(mm) Fylr(MPa) dbTies(mm) s(mm) Fytr(MPa) cover(mm) 

A4-60 160.02 160.02 21.10 6.35 413.70 4.06 150.11 413.70 19.05 

A8-45 160.02 160.02 33.58 6.35 413.70 4.06 150.11 413.70 19.05 

B4-45 160.02 160.02 23.37 6.35 413.70 4.06 150.11 413.70 19.05 

B4-60 160.02 160.02 23.37 6.35 413.70 4.06 150.11 413.70 19.05 

B8-45 160.02 160.02 33.30 6.35 413.70 4.06 150.11 413.70 19.05 

B8-60 160.02 160.02 33.30 6.35 413.70 4.06 150.11 413.70 19.05 

C8-45 160.02 160.02 24.62 6.35 413.70 4.06 150.11 413.70 19.05 

C8-60 160.02 160.02 24.62 6.35 413.70 4.06 150.11 413.70 19.05 

D4-45 160.02 160.02 21.24 6.35 413.70 4.06 150.11 413.70 19.05 

D8-45 160.02 160.02 22.89 6.35 413.70 4.06 150.11 413.70 19.05 

D8-60 160.02 160.02 22.89 6.35 413.70 4.06 150.11 413.70 19.05 

H 254.00 254.00 39.72 12.70 308.69 4.83 152.40 308.69 25.40 

I 254.00 254.00 43.16 12.70 308.69 4.83 152.40 308.69 25.40 
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Table 2: The specifications of steel section dimensions of SRC composite columns 

Spec. d(mm) tw(mm) bf(mm) tf(mm) Fy (MPa) 

A4-60 100.08 6.10 100.08 7.87 344.75 

A8-45 100.08 6.10 100.08 7.87 344.75 

B4-45 100.08 6.10 100.08 7.87 344.75 

B4-60 100.08 6.10 100.08 7.87 344.75 

B8-45 100.08 6.10 100.08 7.87 344.75 

B8-60 100.08 6.10 100.08 7.87 344.75 

C8-45 100.08 6.10 100.08 7.87 344.75 

C8-60 100.08 6.10 100.08 7.87 344.75 

D4-45 100.08 6.10 100.08 7.87 344.75 

D8-45 100.08 6.10 100.08 7.87 344.75 

D8-60 100.08 6.10 100.08 7.87 344.75 

H 152.40 6.35 152.40 6.35 314.69 

I 152.40 6.35 152.40 6.35 314.69 

 

Table 3: The ratio of test results to nonlinear analysis results for SRC columns 

Spec. H(mm) B(mm) L(mm) Angle 
Pexp 

(KN) 

Mexp 

(KN.m) 
Manal(KN.m) Manal/Mexp Ref. 

A4-60 160.02 160.02 960.12 60.00 524.02 24.15 24.42 1.01 Morino 1984 

A8-45 160.02 160.02 960.12 45.00 378.61 31.63 30.07 0.95 Morino 1984 

B4-45 160.02 160.02 2400.30 45.00 389.60 23.43 23.69 1.01 Morino 1984 

B4-60 160.02 160.02 2400.30 60.00 436.39 26.99 24.38 0.90 Morino 1984 

B8-45 160.02 160.02 2400.30 45.00 294.19 31.27 29.22 0.93 Morino 1984 

B8-60 160.02 160.02 2400.30 60.00 328.31 33.28 31.24 0.94 Morino 1984 

C8-45 160.02 160.02 3600.45 45.00 195.27 25.88 24.37 0.94 Morino 1984 

C8-60 160.02 160.02 3600.45 60.00 194.02 23.04 26.61 1.15 Morino 1984 

D4-45 160.02 160.02 4800.60 45.00 209.01 19.10 18.12 0.95 Morino 1984 

D8-45 160.02 160.02 4800.60 45.00 146.61 21.69 22.67 1.04 Morino 1984 

D8-60 160.02 160.02 4800.60 60.00 158.35 21.29 24.25 1.14 Morino 1984 

H 254.00 254.00 7432.29 30.11 353.66 84.20 86.90 1.03 Virdi 1973 

I 254.00 254.00 7432.29 30.11 293.88 96.38 89.74 0.93 Virdi 1973 

      
Mean 1.00 

 
      

Standard Deviation 0.08 
 

      
Coheficient of Variation 0.08 

 
 

 
(a)               (b) 

Figure 5. Mx-My two-dimensional interaction curve: (a) A4-60 specimen, (b) H specimen 
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4. BENCHMARK FRAMES 
 

In researches of Kanchanalai [41], Surovek-Maleck and White [42, 43], benchmark frames 

with supporting conditions and various lateral bracings were used to analyze the stability of 

steel columns. Denavit et al. [13] expanded these frames and used with a set of composite 

sections of CFT and SRC to analyze the stability of composite columns. One of the main 

features of these base frames is the complete coverage of possible modes for composite 

beam – columns in terms of supporting conditions, lateral bracings, column bearing loads, 

material strength and the size of sections. In this study, these SRC composite sections and 

frames have been used to obtain a complete set of interaction curves of biaxial bending 

moment – axial force related to composite columns in different situations. 

 

4.1 Sections 

SRC composite section are selected to incorporate practical range of concrete strength and 

steel ratio. Other specifications of sections such as steel yield stress are considered to be 

common values. Steel yield stress for rectangular sections of wide flange W is considered to 

be Fy = 344.74MPa (50 ksi). For concrete with a typical strength f'c = 27.6MPa (4 ksi) and 

for high strength concrete it is f'c = 68.9MPa (10 ksi). 

In composite section there is no upper limit for steel ratio. But practical and dimensional 

considerations in which the steel sections are made will impose the upper limit of about 12% 

for SRC. Also AISC 360-16 regulation considers at least 1% steel for composite sections. 

Also this design code specified minimum of 0.4% for reinforcement and there is no 

specification for maximum value. ACI regulation specified maximum of 8% for 

reinforcement. 

Given these limitations, three wide flange section of W for SRC section, three 

reinforcement configuration and three external dimensions of 560 mm in 560 mm (22 in 22 

inches), 710 mm in 710 mm (28 in 28 inches), and 865 mm in 865 mm (34 in 34 inches) 

have been used. A total of 36 sections (18 sections and two concrete strengths) were selected 

for SRCs. Table 4 and 5 show the type and ratio of used steel and the configuration of SRC 

sections reinforcement. 

 
Table 4: Selected steel sections 

Index Steel Shape ρs 

A W360х463 11.66% 

B W360х347 8.74% 

C W360х179 4.49% 

SRC steel shapes 

 
Table 5: Reinforcement configuration 

Index Steel Shape ρs 

A 20 #36 3.98% 

B 12 #32 1.94% 

SRC reinforcing configuration 
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The agreement for naming the sections is three parts which are separated by a dash. 

These parts include SRC section type, section shape and concrete strength. For example, the 

SRC-ACB-4 considers SRC which is made of a section with external dimension of 560 mm 

in 560 mm, a steel section of W360x179, 12 # 32 reinforcement and a concrete with strength 

of f'c = 27.6 MPa. These sections are shown schematically in Fig. 6. 

 

 
Figure 6. The schematic design of sections in different dimensions 

 

4.2 Frames 

Denavit et al. [13] expanded the benchmark frames used in the previous researches and 

utilized them to analyze the stability of composite columns. In this research the three-

dimensional model of these frames was used to analyze the behavior of SRC composite 

columns in biaxial bending. This set include sidesway-inhibited frames and various end 

conditions. Frames have been expanded and their parameters for three-dimensional behavior 

of composite sections have been developed. This frame is shown schematically in Fig. 7. 

 

 
Figure 7. Schematic view of benchmark frame 



PREDICTION OF BIAXIAL BENDING BEHAVIOR OF STEEL-CONCRETE... 391 

Sidesway-inhibited frames are defined with slenderness coefficient of λoe1g and the end 

moments ratio of β. With λoe1g, length of each frame (L) is calculated using equation 3. In 

this equation, EIg(w) is gross elastic rigidity of weak axis and Pnog is nominal zero-length 

compressive strength. The value of these parameters for selected framed is presented in 

Table 6. 

 
Table 6: The variables of base frames 

Frame Slenderness End moment ratio Number of frames 

Sidesway-

inhibited 

4 values λoe1g 

=0.45,0.90,1.35,1.90 
4 values β=0,1,2,3 16 

 

4.3 Initial geometric imperfection 

Numerical geometric imperfections equal to the manufacturing and installation tolerances in 

AISC 360-16 were explicitly modeled. For all frames out-of-straightness was considered the 

half sine wave with a maximum range of L/1000 (Fig. 7b). 

 

 

5. DATA ACQUISITION TO BE USED IN ARTIFICIAL NEURAL 

NETWORK 
 

In this section the obtained results in the inelastic analysis part of benchmark frames are 

classified to be used in artificial neural networks. In this study, the results of sidesway-

inhibited frame analysis have been used for training the neural network. The number of 

samples is 576 frames. 

In order to define each frame, 10 variables including L length of the element, B cross 

section width, bf steel section width, tf flange thickness of steel section, tw web thickness of 

steel section, d depth of steel section, db diameter of armatures, No. number of armatures, f’c 

concrete strength and β bending coefficient were used. Since steel yield strength is 

considered the same for all framed Fy was removed from the inputs. The input data of neural 

network for frames with lateral bracing is presented in Table 7. 

The target output of neural network are P-Mx-My interaction curves for each frame which 

are not symmetric due to steel shape used. So, with the angles of 0, 22.5, 45, 67.5 and 90 

degrees, we can design interaction curve. In each angle, there are 7 values of moments for 

each component of x and y. by finding the sum of square roots of Mx and My for each group, 

a value of M is obtained. Therefore, there will be a total of 35 moments for five angles. Also 

to reflect the value of axial force, the maximum Pmax is sufficient. Because this value is 

divided into equal intervals from Pmax to zero. Accordingly, the interaction curve in each 

frame can be described. 

According to what we already said, the modeled neural network for composite columns 

has 10 inputs and 36 outputs and 576 samples. 
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Table 7: Input data of neural network for frames with lateral bracing 

Number 

of Frames 

Length 

(mm) 
B(mm) ϐ d(mm) tw(mm) bf(mm) tf(mm) F'c(MPa) db(mm) rebar No. 

1 5967.48 558.80 -0.5 434.34 35.81 411.48 57.40 27.58 35.81 20 

2 7240.52 711.20 -0.5 434.34 35.81 411.48 57.40 27.58 35.81 20 

3 8820.15 863.60 -0.5 434.34 35.81 411.48 57.40 27.58 35.81 20 

4 5621.78 558.80 -0.5 434.34 35.81 411.48 57.40 68.95 35.81 20 

5 6750.56 711.20 -0.5 434.34 35.81 411.48 57.40 68.95 35.81 20 

6 8090.66 863.60 -0.5 434.34 35.81 411.48 57.40 68.95 35.81 20 

7 6107.43 558.80 -0.5 434.34 35.81 411.48 57.40 27.58 32.26 12 

8 7288.28 711.20 -0.5 434.34 35.81 411.48 57.40 27.58 32.26 12 

9 8807.20 863.60 -0.5 434.34 35.81 411.48 57.40 27.58 32.26 12 

10 5687.06 558.80 -0.5 434.34 35.81 411.48 57.40 68.95 32.26 12 

11 6741.67 711.20 -0.5 434.34 35.81 411.48 57.40 68.95 32.26 12 

12 8037.58 863.60 -0.5 434.34 35.81 411.48 57.40 68.95 32.26 12 

13 5896.10 558.80 -0.5 406.40 27.18 403.86 43.69 27.58 35.81 20 

14 7342.12 711.20 -0.5 406.40 27.18 403.86 43.69 27.58 35.81 20 

15 9046.97 863.60 -0.5 406.40 27.18 403.86 43.69 27.58 35.81 20 

16 5516.12 558.80 -0.5 406.40 27.18 403.86 43.69 68.95 35.81 20 

17 6762.75 711.20 -0.5 406.40 27.18 403.86 43.69 68.95 35.81 20 

18 8168.89 863.60 -0.5 406.40 27.18 403.86 43.69 68.95 35.81 20 

19 6051.80 558.80 -0.5 406.40 27.18 403.86 43.69 27.58 32.26 12 

20 7408.93 711.20 -0.5 406.40 27.18 403.86 43.69 27.58 32.26 12 

. . . . . . . . . . . 

. . . . . . . . . . . 

. . . . . . . . . . . 

573 40227.25 863.60 1 332.74 18.03 312.42 28.19 27.58 32.26 12 

574 22655.53 558.80 1 332.74 18.03 312.42 28.19 68.95 32.26 12 

575 28604.72 711.20 1 332.74 18.03 312.42 28.19 68.95 32.26 12 

576 34830.26 863.60 1 332.74 18.03 312.42 28.19 68.95 32.26 12 

 

5.1 Evaluation of neural network performance 

In this section, the performance of the multilayer perceptron neural network is investigated 

by various algorithms and it will be compared with analytical results. Regarding the 

algorithms used in previous researches and investigation of various algorithms in terms of 

suitability for this study, multilayer neural networks was performed with Levenberg-

Marquardt (LM) and Bayesian Regularization (BR) algorithms in MATLAB software. First, 

the number of neurons and optimal network structure were investigated. 
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5.2 Selecting the number of hidden layer neurons 

Selection of neurons has a very important impact on neural network performance. In the 

case of uncontrolled increase of neurons, overfitting occurs. That is, the modeled neural 

network offers accurate results with specific samples but by using this model in samples 

other than the samples used in network, we face very inaccurate results. Various methods 

have been proposed in order to determine the number of neurons to prevent overfitting. 

Some of these methods only depend on the number of inputs, and some depend on the 

number of inputs and outputs at the same time. 

According to Kolmogorov theory the number of hidden layer neurons K must be equal to 

square root of multiplication of inputs and outputs. 

 

(3) 𝐾 = √𝑀.𝑁 

 

By using this formula, the number of neurons will be 19. Normally, the number of 

neurons is between the number of inputs and the number of outputs, and also their number is 

never twice more than the number of inputs. The following experimental formula is 

presented to find the right value. 

 

(4) 𝐾 = (𝑀 + 𝑁)2/3 

 

By using this formula, the number of neurons must be 13. Also based on researches of 

Hush and Horne (1993) the maximum number of hidden layer neurons must be based on the 

following formula: 

 

(5) 𝐾 ≤ 2𝑀 + 1 

 

Therefore, the number of neurons must not exceed 21. 

In this study, the number of training data is 403 (70% randomly selected from 576) for 

braced frames. Based on the previous values and examination of different values for the 

number of neurons, the number 14 had the best results. 

 

5.3 The output results of neural network 

In this section the performance of modeled neural network for the frames is investigated 

using LM and BR algorithms. Fig. 8 shows the performance of trained neural network using 

LM algorithm for the sidesway-inhibited frames. This figure has 4 diagrams including the 

performance of training parts, validation, testing, and total data. The linear correlation 

coefficient for these parts is in the range of 0.996 and 0.998. This correlation represents a 

very good performance of this model for determining the behavior of composite columns. 

Fig. 9 presents the performance of artificial neural network with BR algorithm for 

sidesway-inhibited frames. Range of variation in correlation factor R is 0.997 for test and 

validation data and 0.998 for train data which illustrate better performance of this algorithm 

rather than LM algorithm. 
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Figure 8. The results of neural network and LM algorithm on composite frames with lateral 

bracing 
 

 
Figure 9. The results of neural network and BR algorithm on composite frames with lateral 
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bracing 

 
Figure 10. The histogram of relative error percentage for neural network model for frames with 

lateral bracing 

 

Fig. 10 shows histogram of relative error percentage for neural network model for frames 

with lateral bracing. The relative error of all samples is less than 0.007%. Also error of most 

of samples is less than 0.001%. 

 

5.4 Comparison of the results of analytical frames with neural network outputs 

After training the neural network model for P-Mx-My SRC interaction curve of SRC 

composite columns, in order to examine the accuracy, this model was compared with the 

results obtained from inelastic analysis of few frames, in the range of the neural network 

variables. For this purpose, SRC columns with external dimensions of 610 mm in 610 mm 

(24 in 24 inches) and 762 mm in 762 mm (30 in 30 inches) and steel sections of W360x314 

and W310x202 were considered. The specifications of sections and materials used in these 

samples were then given to neural network as input and estimated three-dimensional 

interaction curve was obtained. Also the interaction curve of each of these samples was also 

created by nonlinear analysis. For better comparison of two interaction curves, in axial load 

of 0.6Pmax two curves were cut and their Mx-My curves were compared in this axial load. 
Fig. 11 and 12 illustrates the results of sample Spec8 with neural network model of LM and 

BR algorithm in axial loads of 0.2Pmax, 0.4Pmax, 0.6Pmax and 0.8Pmax respectively. The ratio 

of obtained bending moment from neural network with the BR algorithm to bending 

moment of nonlinear analysis at 45-degree angle is shown in Table 8. These results indicate 

the high accuracy of neural network with BR algorithm in predicting the behavior of these 

columns. 
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Figure 6. Comparing the results of sample Spec8 with neural network model of LM algorithm in 

axial loads of 0.2Pmax to 0.8Pmax 

 

Table 8: The ratio of estimated moments of neural network to nonlinear analysis moment 

Spec. d(mm) tw(mm) bf(m) tf(mm) H(mm) fc(MPa) db(mm) config L(mm) 
Pexp 

(KN) 

MANN/MInelastic 

at 45° 

Spec1 340.36 20.07 314.96 31.75 609.60 27.58 35.81 20 4064 15286 1.01 

Spec2 398.78 24.89 401.32 39.62 762.00 27.58 35.81 20 4064 21632.18 0.94 

Spec3 398.78 24.89 401.32 39.62 609.60 27.58 35.81 20 4064 18040.78 0.97 

Spec4 340.36 20.07 314.96 31.75 762.00 27.58 35.81 20 4064 19013.38 1 

Spec5 340.36 20.07 314.96 31.75 609.60 27.58 35.81 20 8128 12273.81 1.03 

Spec6 398.78 24.89 401.32 39.62 762.00 27.58 35.81 20 8128 19150.33 0.98 

Spec7 398.78 24.89 401.32 39.62 609.60 27.58 35.81 20 8128 14394.26 0.98 

Spec8 340.36 20.07 314.96 31.75 762.00 27.58 35.81 20 8128 16976.95 1.01 

        
Mean 0.99 

        
Standard Deviation (SD) 0.03 

        

Coefficient of Variation 

(COV) 
0.03 
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Figure 12. Comparing the results of sample Spec8 with neural network model of BR algorithm 

in axial loads of 0.2Pmax to 0.8Pmax 

 

 

6. CONCLUSION 
 

In this study, a nonlinear analysis of composite beam-columns was carried out by using 

mixed beam-column formulation and fiber elements to make P-Mx-My three-dimensional 

interaction curves. Then, by using benchmark frames, a large set of SRC composite beam-

columns with different properties was selected and their three-dimensional interaction 

curves were obtained. By using this data, artificial neural network was trained to estimate 

the complex behavior of these beam–columns. Two different algorithms for modeling of the 

neural network were used and the accuracy of each of them was analyzed using the 

analytical results in the range of neural network variables. These results indicate that the 

generated models can present a proper estimation of the nonlinear behavior of composite 

beam-columns. 
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