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ABSTRACT 
 

The present study is an attempt to propose a mutation-based real-coded genetic algorithm 
(MBRCGA) for sizing and layout optimization of planar and spatial truss structures. The 
Gaussian mutation operator is used to create the reproduction operators. An adaptive 
tournament selection mechanism in combination with adaptive Gaussian mutation operators 
are proposed to achieve an effective search in the design space. The standard deviation of 
design variables is used as a key factor in the adaptation of mutation operators. The reliability 
of the proposed algorithm is investigated in typical sizing and layout optimization problems 
with both discrete and continuous design variables. The numerical results clearly indicated the 
competitiveness of MBRCGA in comparison with previously presented methods in the 
literature. 
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1. INTRODUCTION 
 

Genetic algorithms (GAs) are stochastic search algorithms based on the fundamental 
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processes involved in the natural evolution and Darwin’s survival of the fittest theorem. The 
characteristics of GAs such as the ability of handling both continuous and discrete variables, 
not needing gradient information, and their applicability to a population of candidate solutions, 
make GAs popular and efficient optimization techniques. 

Design optimization of structures attempts to find a minimum weight structure with no 
violation of defined constraints. Generally, design optimization of truss structures can be 
categorized as sizing optimization, layout optimization, and topology optimization. In sizing 
optimization, cross-sectional areas of members, in layout optimization, nodal coordinates, and 
in topology optimization, presence or absence of members, are considered as design variables.  

Goldberg and Samtani [1] seem to be the first to use GA for structural optimization. Many 
researchers used GA for structural optimization so far. Hajela and Lee [2] employed GA for 
optimum design of truss structures. Deb and Gulati [3] used real-coded genetic algorithms 
(RCGAs), with specialized reproduction operators, for sizing, topology, and layout 
optimization of planar and spatial truss structures. Krishnamoorthy et al. [4] used an object-
oriented framework for GAs in optimization of spatial trusses. Kaveh and Kalatjari [5-7] 
employed GA and force method of structural analysis for sizing, layout, and topology 
optimization of truss structures. Tang et al. [8] used GA with mixed coding for all three types 
of truss optimization mentioned above. Hwang and He [9] proposed a hybrid real-parameter 
GA for function optimization and employed it for sizing and layout optimization of a 15-bar 
truss structure. Balling et al. [10] used GA for optimization of skeletal structures. Kameshki 
and Saka [11] used GA for optimum geometry design of nonlinear braced domes. Hasançebi 
and Erbatur [12] employed improved GA methodologies for optimum design of truss 
structures. Rahami et al. [13] employed GA and force method for sizing, layout, and topology 
optimization of truss structures. Interestingly, in their paper, GA was employed for structural 
analysis process. Togan and Daloglu [14] proposed an initial population strategy and self 
adaptation in member grouping process. They employed real value coding in GA for sizing 
optimization of planar and spatial trusses.  

In general, in design optimization of truss structures via GA, the algorithm initiates with a 
population of randomly generated candidate designs for the proposed truss optimization 
problem. Each candidate design which is an individual of the population is considered as a 
chromosome in GA. Chromosomes are vectors of design variables and can be represented in 
the form of binary or real parameter strings, depending on the nature of the design variables. 
The second stage in GA is to evaluate all individuals of the population in order to calculate the 
fitness of each individual. Then sampling and selection mechanisms are used to determine the 
parents of the next population. Using selection mechanisms, fitter individuals are more likely 
to be selected as parents. In the next step of GA, crossover and mutation operators are applied 
to the parents in order to generate the individuals of new population. When the new population 
is generated, the process is repeated until the termination criterion is reached. The termination 
criterion is not unique: it can be a predefined maximum number of iterations, a determined 
mean value of fitness of individuals, or the rate of progress in the results. When termination 
criterion is reached, the fittest individual of the population is reported as the optimum design.  

In GAs, similar to other metaheuristic algorithms commonly used in literature such as 
particle swarm optimization [15], simulated annealing [16], harmony search method [17], ant 
colony optimization [18, 19] etc., both sizing and layout optimization can be done 
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simultaneously which makes it a desirable optimization algorithm. The procedure of GA is the 
same for sizing and layout optimization, and the only difference is in design variables. 
According to the stochastic nature of the GA reaching different optimum design in each run is 
normal, but the more reliable the GA, the less difference between the results will be. 

This paper is an updated and revised version of the conference paper [20]. The conference 
paper includes design optimization of planar truss structures with continuous design variables 
while in the present paper different examples of planar and spatial truss structures with both 
discrete and continuous design variables are considered. In the present study, a mutation-
based real-coded genetic algorithm (MBRCGA) is proposed and employed for sizing and 
layout optimization of truss structures with fixed topology. Two adaptive mutation operators 
are proposed for reproduction process, and an adaptive tournament selection is employed for 
the selection stage. Classical weight minimization problems of truss structures including both 
sizing and layout optimization variables are presented. Results are compared with similar 
studies documented in literature. 

 
 

2. PROPOSED OPTIMIZATION ALGORITHM 
 

2.1. Representation 

In sizing and layout optimization of truss structures there are two types of design variables. 
The first type is cross-sectional areas of bars called sizing variables and the second type of 
design variables consists of nodal coordinates, known as layout or geometry variables. 
Suppose that in an optimization problem, the number of sizing and layout design variables are 
NA and NL, respectively. As shown in Figure 1, the following vector representation is used to 
represent the chromosomes. Here, NT is the total number of design variables in a 
chromosome. The first NA variables of chromosome belong to the sizing variables and the 
remaining NL variables correspond to layout. Binary or real variable representation can be 
used for expressing design variables. Binary representation needs time consuming coding and 
decoding processes. Also, by increasing the precision of the problem, binary strings become 
longer and entail more computational effort for the GA. In order to overcome these difficulties 
real variable vectors were used for representing the chromosomes of the population.  

 

xNA-1 xNA xNA+1 xNA+2 . . . xNT-1x1 x2 . . .

NA

xNT

NL

Sizing variables Layout variables

 
Figure 1. Representation of a chromosome 

 
2.2. Formulation of the problem 

Optimization of truss structures using GA can be formulated as follows [5]: 
 

 Find X ={x 1 , x 2 , …, x NT}, (1a) 
 x nl  ≤ x n  ≤ x nu   ,   n = 1, 2, . . . , NT (1b) 
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to minimize F(X) = W(X) + P(X) (2) 
 

subjected to g i (X) =
ai

i

σ
σ  - 1  ≤ 0         i = 1, 2, . . . , NM (3) 

 

 g j (X) =
aj

j

d
d  - 1 ≤ 0          j = 1, 2, . . . , ND (4) 

 
where in equation (1a) and (1b), X is a candidate design, x nl  and x nu  are the lower and upper 
bounds of the n-th design variable x n , and NT is the total number of design variables in a 
chromosome. In equation (2), F(X) is the objective function, W(X) is the weight of the truss 
structure and P(X) is the penalty function which is used for handling constraints. In equation 
(3) and (4), g i and j g are stress and displacement constraints respectively, σ i is the stress in the 
i-th member, σ ai is the allowable stress value in the i-th member, j d is the displacement in the 
direction of the j-th degree of freedom and aj d is the allowable displacement in the same 
direction. NM is the number of truss members and ND is the number of active degrees of 
freedom. 

 
2.3. Penalty function 

In GAs penalty functions are used for handling constraints. We used the following penalty 
function proposed by Rajeev and Krishnamoorthy [21] with an adaptive approach: 

 
 P(X) = W(X)KC (5a) 

 

 C =∑
=

NG

r
rg

1
(X) (5b)  

 
where W(X) is the weight of the truss structure, K is a penalty constant; and r g  is the amount 
of violation of r-th constraint. Here, NG, which is equal to the sum of ND and NM, is the total 
number of constrain evaluations for each individual.   

In design optimization of structures, one major difficulty is that the feasibility of designs is 
highly sensitive to the predefined penalty coefficients, such as parameter K in equation (5a). 
Large penalty yields conservative designs while small penalty may lead to an infeasible final 
design. Therefore, employing adaptive penalty functions can be helpful [27, 22]. 

Increasing the value of K, within a specific range, during the process of optimization, was 
proposed in [5]. The adaptation of penalty function, according to the feasibility of the best 
individuals of the last generations of GA, was considered in [22]. These two strategies were 
combined in the present study in order to obtain an adaptive criterion for updating the K 
parameter. For that purpose, K starts from the minimum value in the first iteration and is then 
updated in the subsequent iterations as follows:  
    K(t) = K(t-1) +∆K       if the best individual is infeasible (6a) 
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  K(t) = K(t-1) − ∆K/2    if the best individual is feasible (6b) 

 
where ∆K is the step size, and K(t) is the value of parameter K in the t-th iteration. In order to 
avoid getting stuck in a loop, in equation (6a), ∆K in added to K(t-1) while in equation (6b),  
∆K/2 is subtracted from K(t-1). It is worth mentioning that, in this study, only a design with 
no violation of constraints is considered as a feasible design and all optimum designs proposed 
by authors are feasible.  

 
2.4. Fitness function 

The objective function F(X) in equation (2) is used in order to evaluate the fitness of each 
individual defined by the design vector X. The best and the worst individuals correspond to 
the smallest and largest values of the objective function, respectively. 

 
2.5. Strategy of evolution 

The evolutionary model used in this paper is similar to that of (µ+λ)−ES [23]. In each 
generation of (µ+λ)−ES, µ parents generate λ new individuals; then the temporary population 
of (µ+λ) individuals is reduced using a selection mechanism to µ individuals [24]. 

Let the population size be N. In each iteration, N new individuals called offspring, are 
generated using the selection and reproduction operators. A 2N element intermediate 
population including the old population of designs and new offspring is established. The 
intermediate population is ranked according to the fitness of individuals. Next, N best 
individuals are selected as the new population. Thus, no good individual is missed during the 
process of MBRCGA, and the quality of the final solution is guaranteed.  

 
2.6. Selection operator  

In GAs, a selection mechanism is used to increase the probability of choosing fitter individuals 
as parents of the next generation. In this study, tournament selection [25] is employed as the 
selection criterion for the proposed MBRCGA. In tournament selection, M individuals are 
randomly selected from the current population to compete with each other. The winner, which 
is the fittest of M individuals, is selected as a parent. M is called tournament size. M can be 
used in order to adjust the balance between exploration and exploitation. Large values of M 
increase the convergence rate of the GA at the expense of reduction in the diversity of 
population whereas small values of M decrease the convergence rate and increase the diversity 
of population.  

Here, we used an adaptive tournament selection operator which sets the M parameter from 
a predefined range. The selection operation initiates with a minimum value defined for M in 
the first iteration. In the next iterations, M can change with respect to the progress of the 
MBRCGA in each iteration. If there is any progress, M decreases by 1 in order to increase the 
diversity of the population. This makes MBRCGA able to evaluate spread points of the search 
space. If no progress happens, M increases by 1 to increase the probability of selecting best 
individuals of the population. This leads to searching more reliable areas of the search space.  

In order to evaluate the progress of GA, the fitness values of the best individuals in two last 
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iterations are compared. Since penalty coefficient K may change in two sequential iterations, 
for an accurate comparison, equation (5a) is used with an average value of K in two sequential 
iterations.  

 
2.7. Reproduction operators  

In order to create new population in each iteration, offspring are generated from their parents 
using reproduction operators. Different types of crossovers are widely used in various GAs 
[26] as the main reproduction operators, and mutation operators are considered as secondary 
operators required for GAs. In this study, only mutation operators were utilized for the 
reproduction stage.  

Gaussian mutation which is used in both evolutionary strategies [23, 27] and RCGAs [28] 
is employed to create the reproduction operators of the proposed MBRCGA. Using Gaussian 
mutation, it is more probable that an offspring be generated near its parent. Gaussian mutation 
uses normal distribution which has two parameters: a mean value and a standard deviation. 
The density functions of normal distribution, with a mean value of zero and different standard 
deviations (0.5, 1 and 2) are shown in Figure 2. The standard deviation of Gaussian mutation 
determines how far an offspring can be generated from its parent. By increasing the standard 
deviation, individuals farther from their parents can be generated, whereas decreasing the 
standard deviation leads to generating only individuals in the vicinity of the parents. 

Let the individual X be selected for mutation, using a static Gaussian mutation, the n-th 
parameter, x n , of the individual is mutated by:  

 
 x 'n = x n + N(0,σ n ) (7) 

 
where N(0,σ n ) is a normally distributed random number with a mean of zero and standard 
deviation of σ n . Using equation (7), two mutation operators with adaptive standard deviation 
are proposed. The first operator, named operator A, uses the following equation: 

 
 x 'n = x n + N(0, ασ )t,n( ) (8) 
 
where σ )t,n( is the standard deviation of n-th parameter of all individuals of the population in 
the t-th iteration and α is a positive constant, with a maximum value of 1. Operator B which is 
the second operator of the proposed MBRCGA uses the equation below with a positive 
constant of β, in which β≤0.5α., as follows:  
   
 x 'n = x n + N(0, βσ )t,n( ) (9) 
 

In this study, all parameters of an individual X, which is selected for mutation, are mutated. 
Let us show the probability of employing operator A and B for mutation by P a  and P b =1-
P a respectively. In order to mutate each parameter of individual X, a uniformly distributed 
random number z, between 0 and 1, is chosen, if z < Pa, the operator A is selected for 
mutation; otherwise, operator B is selected.  
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Figure 2. The density functions of normal distribution 

 
The standard deviation used in the operator A, in comparison with the operator B, is larger; 

therefore, it can create individuals which are farther from their parents. This helps MBRCGA 
to explore the design space more efficiently. On the other hand, the operator B, using smaller 
standard deviation, is more exploiter, which enables MBRCGA for an efficient local search 
during the optimization process.  

Since in MBRCGA, the initial population is a compound of uniformly distributed random 
numbers, the diversity of initial population makes initial value of σ )t,n( suitable for a global 
search at initial iterations. As the number of iterations increases, due to the convergence of 
MBRCGA, the values of σ )t,n( gradually decrease, and this leads to an effective local search in 
the last iterations to increase the quality of final solution. An important benefit of proposed 
operators is that, in each iteration, the standard deviation needed for each operator, is 
adaptively adjusted by the population itself.  

 
2.8. Discrete and continuous optimization 

Design variables of the truss optimization problems can be discrete or continuous. In this 
paper, layout variables are considered as continuous design variables but sizing variables can 
be continuous or discrete. In truss design optimization, when the cross-sectional areas of 
members are chosen from a determined set of profiles, the problem should be handled in a 
discrete form. For that purpose, member cross-sectional areas were rounded to the nearest 
available profiles. Therefore, the proposed MBRCGA can handle both discrete and continuous 
variables. Moreover, individuals created outside of side constraints are moved back to the 
corresponding lower/upper limits. 

3. NUMERICAL EXAMPLES 
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3.1. Parameter values of MBRCGA 

In this section five optimization examples of planar and spatial truss structures are presented. 
The examples are typical standard optimization problems frequently used in the literature. 
Both sizing and layout optimization are performed using the proposed MBRCGA and the 
results are illustrated in comparison with similar studies published in literature. 

In the proposed MBRCGA, a population of 50 individuals is used. The range of 0.5 to 1.5 
is chosen for the penalty constant K, and the relative step size ∆K is taken as 0.1. For selection 
operator, a minimum M of 5 and a maximum M of 10 are used. For mutation operators, the 
values of both P a and P b are set to 0.5 while parameters α and β are set as 1 and 0.5 
respectively. The integrated force method (IFM) [29] is used for structural analysis. For each 
example, the algorithm is executed 50 times and the best design is reported. The maximum 
number of iterations for the examples 1 to 4 is 200; and for the last example is 600. 
Optimization results are then summarized in Section 4.  

 
3.2. Example 1: Fifteen-bar truss structure 

In this example, the sizing and layout optimization of a 15-bar planar truss structure is taken 
into consideration. The initial geometry of the structure is shown in Figure 3. A vertical load of 
10 kips is applied at node 8. The stress limit is 25 ksi (172.369 MPa) in both tension and 
compression for all members. The material density is 0.1 lb/in. 3 (2767.99 kg/m 3 ) and the 
modulus of elasticity is 10,000 ksi (68,947.6 MPa). For layout optimization, both x and y 
coordinates of nodes 2, 3, 6 and 7, are included as design variables; where nodes 6 and 7 have 
the same x coordinates as joints 2 and 3 respectively. Only the y-coordinates of nodes 4 and 8 
are included as design variables. This test case hence included 23 design variables: 15 sizing 
variables (cross-sectional areas of bars) and 8 layout variables (x 2 = x 6 , x 3 = x 7 , y 2 , y 3 , y 4 , 
y 6 , y 7 , y 8 ). The available profile list for sizing variables is as follows: S = {0.111, 0.141, 
0.174, 0.22, 0.27, 0.287, 0.347, 0.44, 0.539,  0.954, 1.081, 1.174, 1.333, 1.488, 1.764, 2.142, 
2.697, 2.8, 3.131, 3.565, 3.813, 4.805, 5.952, 6.572, 7.192, 8.525, 9.3, 10.85, 13.33, 14.29, 
17.17, 19.18} in. 2 . Table 2 gives the limits of layout variables. The results of optimization 
using MBRCGA are given in Table 1, and the optimum layout of the structure is presented in 
Figures 4(a) and 4(b). Optimization history of this test case is shown in Figure 5. 

y

x

3a

a

54

1 2 3

6

7 8 9

(4)(1)

(8)(7)(6)(5)
P

(2) (3)

10 141211 13 15

a = 120 in  
Figure 3. Fifteen-bar truss structure 
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(a)

 

(4  )

(8)
( b)

 
Figure 4. (a) Optimum layout of the 15-bar truss, (b) Position of the nodes, 4 and 8 

 
Table 1. Comparison of results for the fifteen-bar truss structure 

Design 
variables 

Wu and 
Chow [30] 

Tang et 
al. [8] 

Hwang and 
He [9] 

Rahami et 
al. [13] 

The present 
work 

Sizing variables (in. 2 )  
A1 1.174 1.081 0.954 1.081 0.954 
A2 0.954 0.539 1.081 0.539 0.539 
A3 0.44 0.287 0.44 0.287 0.111 
A4 1.333 0.954 1.174 0.954 0.954 
A5 0.954 0.954 1.488 0.539 0.539 
A6 0.174 0.22 0.27 0.141 0.347 
A7 0.44 0.111 0.27 0.111 0.111 
A8 0.44 0.111 0.347 0.111 0.111 
A9 1.081 0.287 0.22 0.539 0.111 
A10 1.333 0.22 0.44 0.44 0.44 
A11 0.174 0.44 0.347 0.539 0.44 
A12 0.174 0.44 0.22 0.27 0.174 
A13 0.347 0.111 0.27 0.22 0.174 
A14 0.347 0.22 0.44 0.141 0.347 
A15 0.44 0.347 0.22 0.287 0.111 

Layout variables (in.)  
X2 123.189 133.612 118.346 101.5775 105.7835 
X3 231.595 234.752 225.209 227.9112 258.5965 
Y2 107.189 100.449 119.046 134.7986 133.6284 
Y3 119.175 104.738 105.086 128.2206 105.0023 
Y4 60.462 73.762 63.375 54.863 54.4546 
Y6 -16.728 -10.067 -20 -16.4484 -19.929 
Y7 15.565 -1.339 -20 -13.3007 3.6223 
Y8 36.645 50.402 57.722 54.8572 54.4474 

Weight (lb) 120.528 79.82 104.573 76.6854 72.5152 
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Table 2. Bounds of layout variables of example 1 

Design variable (in.) Lower bound Upper bound 

X2 100 140 

X3 220 260 

Y2 100 140 

Y3 100 140 

Y4 50 90 

Y6 -20 20 

Y7 -20 20 

Y8 20 60 
 

 
Figure 5. Optimization history of 15-bar truss structure 

 
3.3. Example 2: Eighteen-bar truss structure 

The 18-bar planar truss structure, shown in Figure 6, is considered for both sizing and 
layout optimization. Five vertical loads of 20 kips are acting on nodes 1, 2, 4, 6 and 8. 
The material density is 0.1 lb/in. 3 (2767.99 kg/m 3 ) while the Young’s modulus E is 
10,000 ksi (68,947.6 MPa). The stress limit is 20 ksi (137.895 MPa) in both tension and 
compression for all members. The Euler buckling strength for the i-th member with a 
cross-sectional area of A i and length of L i is −4EA i / L 2

i , ( i = 1, 2, . . . , 18). The 
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members of the structure are linked into 4 groups, considered as 4 sizing variables. The 
cross-sectional areas of members are chosen from the set: S = {2, 2.25, 2.5, . . . , 21.25, 
21.5, 21.75} in. 2 . Both x and y coordinates of nodes 3, 5, 7 and 9 are included as design 
variables. Therefore, there are 12 design variables in this example: 4 sizing variables and 
8 layout variables. The bounds of layout variables are given in Table 3. The results of 
optimization using MBRCGA are given in Table 4, and the optimum layout of the 
structure is presented in Figure 7.  

 

y

x

5a

a

1418

16 12 8 4 1

10 6

17 13 9 5
215 11 7 3

(1)(2)(4)(6)(8)(10)

(3)(5)(7)(9)(11)

P P PP P

 
Figure 6. Eighteen-bar truss structure, a = 250 in 

 

 
Figure 7. Optimum layout of the eighteen-bar truss structure 

 
     Table 3. Bounds of layout variables of example 2 

Design variable (in.) Lower bound Upper bound 

X3 775 1225 

X5 525 975 

X7 275 725 

X9 25 475 

Y3 -225 245 

Y5 -225 245 

Y7 -225 245 

Y9 -225 245 
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3.4. Example 3: Spatial twenty five-bar truss  

This example illustrates the sizing and layout optimization of the spatial 25-bar truss (Figure 
8). Loading conditions are specified in Table 5. The stress limit is 40 ksi (275.79 MPa) in both 
tension and compression for all members, and the displacement of all nodes in directions x, y 
and z must be less than ± 0.35 in. The density of the material is 0.1 lb/in 3 (2767.99 kg/m 3 ) 
and the modulus of elasticity is 10,000 ksi (68,947.6 MPa). As shown in Table 7, the 
members of the truss are linked into 8 groups [7], considered as 8 sizing variables. Discrete 
values of sizing variables are chosen from the following set: S = {0.1a (a = 1, . . . , 26), 2.8, 3, 
3.2, 3.4} in 2 . For layout optimization, all coordinates of nodes 3, 4, 5 and 6 are included as 
design variables, and only x and y coordinates of nodes 7, 8, 9 and 10 are included as design 
variables. Since the structure is symmetric, only 5 layout variables (x 4 = x 5 = −x 3 = −x 6 , x 8 = 
x 9 = −x 7 =−x 10 , y 3 = y 4 = −y 5 = −y 6 , y 7 = y 8 = −y 9 = −y10 , z 3 = z 4 = z 5 = z 6 ) were 
considered in this test case. The bounds of layout design variables and the optimization results 
are given in Tables 6 and 7 respectively. Optimization history of this example is shown in 
Figure 11. 

 

L1  = 75 in.         L 2  = 100 in.         L 3  = 200 in.   

Figure 8. Spatial twenty five-bar truss 
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Table 4. Comparison of results for the eighteen-bar truss structure  

Design 
variables Members 

Rajeev and 
Krishnamoorthy 

[35] 

Kaveh and 
Kalatjari [7] 

Rahami 
et al. [13] 

The present 
work 

Sizing variables (in. 2 )  

G1 1, 4, 8, 12, 16 12.50 12.25 12.75 12.75 
G2 2, 6, 10, 14, 18 16.25 18 18.5 18.25 
G3 3, 7, 11, 15 8 5.25 4.75 5 
G4 5, 9, 13, 17 4 4.25 3.25 3.25 

Layout variables (in.)  
X3  891.90 913 917.4475 916.0812 
Y3  145.3 186.8 193.7899 191.4300 
X5  610.66 650 654.3243 650.0573 
Y5  118.20 150.5 159.9436 153.4968 
X7  385.40 418.8 424.4821 419.4508 
Y7  72.50 97.4 108.5779 105.5322 
X9  184.40 204.8 208.4691 205.6591 
Y9  23.40 26.7 37.6349 36.4848 

Weight (lb)  4616.82 4547.9 4530.7 4520.2 
 

Table 5. Loading of spatial 25-bar truss  

Node Fx (kips) Fy (kips) Fz (kips) 

1 1 −10 −10 

2 0 −10 −10 

3 0.5 0 0 

6 0.6 0 0 
 

Table 6. Bounds of layout variables of example 3 

Design variable (in.) Lower bound Upper bound 

X4 20 60 

Y4 40 80 

Z4 90 130 

X8 40 80 

Y8 100 140 
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Table 7. Comparison of results for the spatial 25-bar truss structure 

Design 
variables 

Wu and 
Chow [30] 

Tang et 
al. [8] 

Kaveh and 
Kalatjari [7] 

Rahami et 
al. [13] 

The present 
work 

Sizing variables (in. 2 )  

A1 0.1 0.1 0.1 0.1 0.1 

A2 0.2 0.1 0.1 0.1 0.1 

A3 1.1 1.1 1.1 1.1 1 

A4 0.2 0.1 0.1 0.1 0.1 

A5 0.3 0.1 0.1 0.1 0.1 

A6 0.1 0.2 0.1 0.1 0.1 

A7 0.2 0.2 0.1 0.2 0.1 

A8 0.9 0.7 1 0.8 0.9 

Layout variables (in.)  

X4 41.07 35.47 36.23 33.0487 37.6715 

Y4 53.47 60.37 58.56 53.5663 54.4931 

Z4 124.6 129.07 115.59 129.9092 130 

X8 50.8 45.06 46.46 43.7826 51.8819 

Y8 131.48 137.04 127.95 136.8381 139.5176 

Weight (lb) 136.2 124.94 124 120.1149 117.257 

 
3.5. Example 4: One hundred twenty-bar dome truss  

The mixed sizing-layout optimization problem of the 120-bar dome truss (Figure 9) was 
solved in [31]. In the present study, no layout variables were considered. The structure is 
subjected to vertical loading at all unsupported nodes. The loads are taken as −13.49 kips at 
node 1, −6.744 kips at nodes 2 to 14, and −2.248 kips in the remaining nodes. The minimum 
allowable cross-sectional area of each member is limited to 0.775 in. 2 . The allowable tensile 
stress is 0.6F y  and the compressive stress constraint σ b

i of member i is as follows [32]: 
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where F y is the yield stress of steel, E is the modulus of elasticity, λ i  is the slenderness ratio 
(λ i = kL i /r i ), k is the effective length factor, L i  is the length of the member, r i  is the radius 
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of gyration,  and C = y2 FE2π . Material density is 0.288 lb/in. 3 (7971.81 kg/m 3 ), F y = 58 ksi 
(400 MPa), E = 30,450 ksi (210,000 MPa), and r i = 0.4993A 6777.0

i for the pipe sections [33]. 
In this example, two different situations are considered: (i) Case 1 with no displacement 
constraints; (ii) Case 2 where all displacements must be less than ± 0.1969 in. . Table 8 gives 
the results of optimization in both cases. 

 

 
 

a 1  = 546.61 in.         a 2  = 984.252 in.       a 3  = 1251.02 in. 
h1  = 118.11 in.         h 2 = 230.315 in.       h 3 = 275.591 in.  

Figure 9. One hundred twenty-bar dome truss 
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Table 8. Comparison of results for the 120-dome truss 

Case 1 Case 2 

Design variables Lee and 
Geem [33] 

The present 
work 

Lee and Geem 
[33] 

The present 
work 

Sizing variables (in 2 )   

A1 3.295 3.2976 3.296 3.2985 

A2 2.396 2.3964 2.789 2.7928 

A3 3.874 3.8736 3.872 3.8748 

A4 2.571 2.571 2.57 2.5719 

A5 1.15 1.1513 1.149 1.1501 

A6 3.331 3.3323 3.331 3.3328 

A7 2.784 2.7848 2.781 2.7838 

Weight (lb) 19707.77 19706.615 19893.34 19901.379 
 

3.6. Example 5: Two hundred-bar truss structure 

The sizing optimization of the 200-bar truss structure, shown in Figure 10, is considered in 
this example. The density of the material is 0.283 lb/in. 3 (7833.41 kg/m 3 ) and the modulus of 
elasticity is 30,000 ksi (20,6842.8 MPa). The members are only subjected to the stress 
constraints with limits of ±10 ksi (±68.948 MPa). The structure is subjected to three 
independent loading conditions: 
 

1) 1.0 kip acting in the positive x direction at nodes 1, 6, 15, 20, 29, 34, 43, 48, 57, 62, 
71. 

2) 10 kips acting in the negative y direction at nodes 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 
16, 17, 18, 19, 20, 22, 24, 26, . . . , 71, 72, 73, 74, and 75. 

3) Conditions 1 and 2 acting together.  
 
Since the members of the truss are linked into 29 groups, shown in Table 4, there are 29 

sizing variables in this example. The lower bound of cross-sectional areas of members is 0.1 
in. 2 . Optimum design found by MBRCGA is presented in Table 9 and optimization history of 
this test case is shown in Figure 12. 
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a1  = 240 in.       a 2  = 144 in.       a 3  = 360 in.  
Figure 10. Two hundred-bar truss structure 

 

  
Figure 11. Optimization history of 25-bar truss 

structure  
Figure 12. Optimization history of 200-bar truss 

structure 
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Table 9. Comparison of results for the 200-bar truss structure 

Groups Members Lee and 
Geem [33] 

Lamberti 
[34] 

The present 
work 

Sizing variables (in2)  
G1 1, 2 , 3, 4 0.1253 0.1468 0.1489 
G2 5, 8, 11, 14, 17 1.0157 0.94 0.96 
G3 19, 20, 21, 22, 23, 24 0.1069 0.1 0.1 

G4 18, 25, 56, 63, 94, 101, 132, 139, 170, 
177 0.1096 0.1 0.1005 

G5 26, 29, 32, 35, 38 1.9369 1.94 1.9472 

G6 6, 7, 9, 10, 12, 13, 15, 16, 27, 28, 30, 
31, 33, 34, 36, 37 0.2686 0.2962 0.2984 

G7 39, 40, 41, 42 0.1042 0.1 0.1017 
G8 43, 46, 49, 52, 55 2.9731 3.1042 3.1237 
G9 57, 58, 59, 60, 61, 62 0.1309 0.1 0.1002 
G10 64, 67, 70, 73, 76 4.1831 4.1042 4.1252 

G11 44, 45, 47, 48, 50, 51, 53, 54, 65, 66, 
68, 69, 71, 72, 74, 75 0.3967 0.4034 0.4070 

G12 77, 78, 79, 80 0.4416 0.1912 0.1072 
G13 81, 84, 87, 90, 93 5.1873 5.4284 5.4331 
G14 95, 96, 97, 98, 99, 100 0.1912 0.1 0.1744 
G15 102, 105, 108, 111, 114 6.241 6.4284 6.4318 

G16 82, 83, 85, 86, 88, 89, 91, 92, 103, 104, 
106, 107, 109, 110, 112,113 0.6994 0.5734 0.5679 

G17 115, 116, 117, 118 0.1158 0.1327 0.1428 
G18 119, 122, 125, 128, 131 7.7643 7.9717 7.9613 
G19 133, 134, 135, 136, 137, 138 0.1 0.1 0.1005 
G20 140, 143, 146, 149, 152 8.8279 8.9717 8.9671 

G21 120, 121, 123, 124, 126, 127, 129, 130, 
141, 142, 144, 145, 147, 148, 150, 151 0.6986 0.7049 0.7219 

G22 153, 154, 155, 156 1.5563 0.4196 0.4772 
G23 157, 160, 163, 166, 169 10.9806 10.8636 10.9069 
G24 171, 172, 173, 174, 175, 176 0.1317 0.1 0.10070 
G25 178, 181, 184, 187, 190 12.1492 11.8606 11.9064 

G26 158, 159, 161, 162, 164, 165, 168, 179, 
180, 182, 183, 185, 186, 188, 189 1.6373 1.0339 1.0766 

G27 191, 192, 193, 194 5.0032 6.6818 6.5465 
G28 195, 197, 198, 200 9.3545 10.8113 10.7241 
G29 196, 199 15.0919 13.8404 13.9309 

Weight (lb) 25447.1 25446.06 25478.65 
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4. DISCUSSION AND CONCLUSION 
 

This paper described a mutation-based real-coded genetic algorithm, MBRCGA, for sizing 
and layout optimization of planar and spatial truss structures under stress, displacement and 
buckling constraints. The Gaussian mutation operator is used to create two mutation operators 
of the proposed MBRCGA. The standard deviation needed for each operator is adaptively 
adjusted by the population itself. A global search in the initial iterations is considered, which 
gradually leads to a local tuning in the last iterations of the optimization process. In order to 
handle constraints, an adaptive penalty function is proposed to reduce the disadvantages of 
using static penalty constants. In the selection stage the tournament selection operator was 
used with an adaptive tournament size in order to adjust the balance between exploration and 
exploitation.  

The performance of the proposed method is investigated in five typical weight 
minimization problems of planar and spatial truss structures with both discrete and continuous 
design variables. As mentioned in Section 3.1, 50 GA runs were carried out for each test case. 
In order to evaluate the numerical efficiency of MBRCGA, Table 10 reports the best, worst 
and mean values of optimized weight along with the corresponding standard deviation 
observed for each test case. Optimum designs found by MBRCGA are compared to the 
recently reported results in the literature. The results indicate the efficiency, reliability and 
robustness of the proposed MBRCGA. 

 
Table 10. General results of all examples 

Example 
No. 

Maximum 
iteration 

Number of 
structural 
analyses 

Minimum 
weight (lb) 

Mean 
weight (lb) 

Maximum 
weight (lb) 

Standard 
deviation 

(lb) 

1 200 10000 72.52 79.49 86.48 2.54 

2 200 10000 4520.2 4583.55 4751.38 50.2 

3 200 10000 117.257 118.79 124.03 1.7 

4 (Case1) 200 10000 19706.615 19706.615 19706.615 0.0001 

4 (Case2) 200 10000 19901.379 19901.387 19901.727 0.0499 

5 600 30000 25478.65 25748.15 26370.45 224.81 
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