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Abstract

In this research, back-propagation (BP) and generalized regression (GR) GR neural networks are developed
for predicting the performance and emissions of direct injection diesel engine fuelled with the mixtures of
diesel and castor oil fuels. The neural network models for the engine were trained by using some of the
experimental data. Experimental test are carried out on a semi-heavy duty Motorsazan MT4.244 direct
injection diesel engine fuelled with blends of diesel fuel with 0%, 5%,10%,15%,20%, 30% of Castor
0il%(by volume) at various speeds and loads. Then, the performance of these neural networks predictions
are compared by comparing predictions with the experimental results which were not used in the training
process. The comparison of the predicted values shows that the computational accuracy of both GR and BP
neural networks are appropriate, however the GR presents slightly better performance with very faster
training compared with the BP. therefore, it can be concluded that GR can be used to predict performance

and emissions with high accuracy and faster training.
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1. Introduction

Despite growth of fuel demand, dwindling
resources is a crisis for science and technology [1, 2].
Diesel fuel is respected in commerce of countries due
to it uses in comprehensive range as heavy-duty
transport  vehicles, rail transportation systems,
agricultural machineries and construction
equipments[3]. Nowadays, most of developed
countries have found a suitable approach to overcome
the fuel sources leakage and environment pollution,
with mass production and commercialization of
bioenergy [1, 2]. Biodiesel is one of the biofuels that
is known as an alternative biofuel in order to reduce
emissions produced from combustion engines [4, 5].
Biodiesel is produced from transestrification reaction
of vegetables oil (fresh or waste) or animal fats with
alcohol in presence of a catalyst [5, 6]. Biodiesel fuel
has positive influence on engine emissions. It reduces
particular matter (PM), CO and SOx [3].

NOx emissions increase as a drawback of
biodiesel fuel blends, depending on its percentage in
fuel, [3, and 7]. Also biodiesel has other
disadvantages including lower calorific value and
power output which should be improved [7].
Biodiesel will be more industrialized and

commercialized when it is produced from non-edible
and cheap raw oil sources [5]. Monyem et al. [8]
showed that fuel properties of biodiesel might be
varied by oxidation after the biodiesel was stored for
a period of time. They found that after the heating and
bubbling oxygen, the commercial biodiesel had a
shorter ignition delay and lower hydrocarbons (HC)
emission. Dorado et al. [9] carried out experimental
test in a direct injection diesel engine with olive oil
methyl ester and reported a same combustion
efficiency for methyl ester of olive oil and diesel, a
slight reduction in brake specific fuel consumption
(BSFC), reduction of 58.9% in CO, 8.9% in CO2,
37.5% in NO and 32% in NOx for olive oil methyl
ester as compared to diesel. Puhan et al. [10] tested
mahua oil ethyl ester in a four-stroke naturally
aspirated direct injection diesel engine and have
reported an increase in BSFC for mahua oil ethyl
ester compared to diesel. Also, a slight increase in
brake thermal efficiency, reduction in CO emission,
increase in CO2 emission, 63% reduction in HC
emission, reduction in NOx and 70% reduction in
smoke are reported. Buyukkaya [11] tested neat
rapeseed oil and its blends of 5%, 20% and 70%, and
standard diesel fuel in a diesel engine and concluded
that the use of biodiesel produces lower smoke
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opacity, and higher brake specific fuel consumption
(BSFC) compared to diesel fuel and the measured CO
emissions of B5 and B100 fuels were found to be 9%
and 32% lower than that of the diesel fuel,
respectively. Jiafeng et al. [12] showed that lower
heating value, lower volatility, higher viscosity,
generally higher oxides of nitrogen (NOXx) and high
production cost, are some of biodiesel’s negative
attributes. Rao et al. [13] studied the effects of the
percentage of used cooking oil methyl ester
(UCOME) on combustion characteristics (ignition
delay, peak cylinder pressure, heat release rate). It
was observed that the ignition delay periods of
UCOME and its blends are significantly lower than
that of diesel and decrease with increase in the
percentage of UCOME. Also, the results show that
the peak cylinder pressure is slightly higher for
UCOME-diesel blends compared to diesel. This
shows that the peak pressure is not very much
affected using UCOME and its blends compared to
diesel. The maximum heat release rate decreases with
increase in percentage of UCOME in the blend. It can
also be observed that maximum heat release rate
occurs earlier with the increase in the percentage of
UCOME in the blend. Tsolakis et al. [14] studied the
combustion characterizes of rapeseed methyl ester
(RME) pure or blended with ultra-low sulphur diesel
(ULSD) at 20% and 50% by volume (B20 and B50)
in a single-cylinder direct injection diesel engine with
pump-line—nozzle injection system. The combustion
of RME, B20 and B50 resulted in advanced
combustion compared to ULSD. The advanced RME
combustion resulted in the reduction of smoke, HC
and CO while both NOx emissions and fuel
consumption were increased. The combustion of
different fuel blends did not affect significantly the
engine efficiency. The increased amount of oxygen in
the RME molecule and hence in the locally fuel-rich
combustion zones is believed to be an additional
reason for the reduced smoke. The increase of the fuel
consumption is mainly due to the lower calorific
value (LCV) of RME compared to ULSD. The use of
EGR was more effective in the case of biodiesel
blends combustion compared to ULSD combustion.
The NOx emissions were reduced at levels similar to
those of ULSD with the use of similar volumetric
percentages of EGR while the smoke was kept low.
Manufacturing and application engineering always
wants to know the emissions and performance
parameters of a diesel engine fuelled with the various
mixtures of diesel and biodiesel fuels.  These
requirements can be realized by performing various
experimental tests or modeling the engine operations.
Testing the engine at all operating conditions and
various fuel mixtures are time consuming and

expansive. Besides, developing an accurate model for
the operation of dual fuel diesel engine is too difficult
due to the complex process involved. As an
alternative, performance and emissions of a dual fuel
engine can be modeled using by neural networks.
This modeling technique can be applied for predicting
desired parameters when the enough experimental
data is provided for training. The neural network
modeling has been used to predict of performance of
different thermal systems [15-20]. The use of neural
networks for modeling the various operations of
internal combustion engines is a more recent
progress. Theses modeling were used for predicting
of performance and emissions and air-fuel ratio of a
diesel engine [21-24]. Wai Kean Yap et al. [25]
presented a comparison of predictive models for the
estimation of engine power and tailpipe emissions for
a 4 kW gasoline scooter. They used three emissions
predictive models in their study; direct and series
artificial neural network (ANN) models and a
MATLAB dynamic model. They were compared and
analyzed two multilayered networks; the back
propagation (BP) and optimization layer-by-layer
(OLL) algorithms for the ANN models. It was found
that the OLL network properly can predict with a
maximum mean relative error of 1.78% and 1.38%
for the direct and series predictive model respectively.
Also they showed that the series neural network
model gives the most accurate predictions, with MRE
of 0.63% and 0.47% for the engine power and
emissions respectively.

As can be seen in the relevant literature, there are
a no attempts about the using GR neural network
model for predicting of performance and emissions
formation in dual fuel DI diesel engines up to now. In
the present work, beside the BP neural network, the
GR model is also developed to predict performance
and emissions of DI engine fuelled with the mixture
of diesel and biodiesel fuels. The numerical results
demonstrate the computational advantages of the GR
in comparison with the BP. The experimental data for
B0 B5, B15, B20 and B30 at various loads and speeds
are used for training and the test of these neural
networks carried out by B10.

2. Experimental setup and methodology

This study is done in Motorsazan.Co and the
engine under study is a commercial DI, water cooled
four cylinders, in-line, turbocharged aspirated diesel
engine whose major specifications are shown in table
1. The experiments were carried out at various
loads(25%,50%,75% and 100%) and speeds( 1200,
1400,1700,2000rpm) with the mixtures of diesel and
biodiesel having 0%,5%,10%,15%, 20% and 30%
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volumetric proportions of biodiesel were named as
diesel fuel,BO B5,B10,B15, B20 and B30,
respectively.

Figurel shows schematic diagram of experimental
set-up. An eddy current dynamometer with a load cell
was coupled to the engine and used to load the
engine. An AVL GU 13G pressure transducer,
mounted at the cylinder head and connected via an
AVL Micro IFEM piezo amplifier to a data
acquisition board, was used to record the cylinder
pressure. The crankshaft position was measured using
an AVL 365C digital shaft encoder. The test rig
included other standard engine instrumentation such
as thermocouples to measure oil, air, inlet manifold
and exhaust temperatures and pressure gauges
mounted at relevant points. Normal engine test bed
safety features were also included. Atmospheric
conditions (humidity, temperature, pressure) were
monitored during the tests. The maximum fuel
injection pressure was measured using another
pressure transducer that is fitted to the high pressure

fuel pipe between the pump and the injector. Data
acquisition and combustion analysis were carried out
using in-house developed Lab VIEW-based software.
An AVL DiCom4000 gas analyzer was used to
measure NOx, CO, and CO2, by NDIR (non-
dispersive infrared gas analysis), and oxygen (0O2)
concentrations in  the exhaust  manifold
(electrochemical method). Smoke measured using an
AVL 415S smoke meter. Table 2 shows measurement
accuracy of instruments involved in the experiment
for various parameters. The emission measurements
at each mode were repeated five times. The averaged
values of repeated measurements were used in the
analysis. From the repeated data points, the
repeatability of the engine experiments can be
estimated. The standard deviations over the means of
the emission data are shown in table3. It can be seen
from table3 that NOx emission measurement
repeatability is excellent, whereas all other
measurements have good repeatability.

Table 1. MT4.244 engine specifications.

Number of intake valves
Number of cylinders

Volume displacement (lit)
Max power

Max torque

Combustion system

Cooling

Bore x Stroke (mm)
Compression ratio

Engine speed (rpm)
Aspiration

Fuel injection

Start of injection (deg BTDC)
Duration of injection (deg)
Number of nozzle orifice x diameter (mm)
IVC to EVO (deg ATDC)
Rate of fuel injected (kg/hr)
Combustion chamber

1per cylinder

4-in line, vertical
3.99

82 bhp@2000rpm
360 N.m@1400 rpm
Direct injection
Water cooled with oil cooler
100 x 127

175:1

2000

Turbo charged

DPA Pump

4

20

5x0.276

-146 to 95

15.22

Reentrant

Table 2.Measurement accuracy

NOX (AVL DiCom4000)
Smoke (AVL 415S smoke meter)
CO (AVL Digas4000)

Inlet & exhaust CO2 (AVL Digas4000 Light)

1lppm

0.1%
0.01%
0.01%

Table3. Repeatability of measurements.

Emissions NOx
Std. Dev./Mean %  0.85

PM Fuel Cons.
4.2 0.3
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Gas Analysers

Figl.Schematic diagram of experimental set-up

3. Neural Networks

In this study, BP and GR neural networks are
employed for predicting the performance and
emissions of direct injection diesel engine fuelled
with the mixtures of diesel and castor oil fuels. A
brief description of the theoretical aspects of the
above mentioned employed neural networks is given
below.

3.1. Back-Propagation Neural Networks

For training of back-propagation (BP) neural
networks the gradient descent algorithms are usually
employed. Second-order methods, such as Newton’s
method, often converge faster than first-order
methods, such as conjugate gradient methods. Using
the second-order methods the weights are adjusted as
follows:

Wk+1 = Wk_A;l Gk
W,

®

Gy is the

where is a vector of current weights,

-1
current gradient, and Ay is the Hessian matrix of the
performance index at the current values of the
weights.

Unfortunately, it is complex and expensive to
compute the Hessian matrix for feed-forward neural
networks. In this study, Levenberg-Marquardt (LM)
[26] algorithm is employed to adjust the weights. The
LM algorithm was designed to approach second-order
training speed without having to compute the Hessian
matrix. When the performance function has the form
of a sum of squares, then the Hessian matrix can be
approximated as:

T

H=J"J )
N

G=J'Err 3)

where J is the Jacobian matrix that contains first
derivatives of the network errors with respect to the
weights, and Err is a vector of network errors.

The LM algorithm uses this approximation to the
Hessian matrix in the following Newton-like update
equation:
W, =W, ~[3"J+ul] 3" Err )

where p is a correction factor. The value of p is
decreased after each successful step and is increased
only when a tentative step would increase the
performance function. In this way, the performance
function is always reduced at each iteration of the
algorithm [27].

In this paper to prevent from over-fitting the
performance function of the network is modified by
adding a term that consists of the mean of the sum of
squares of the network weights as follows:

YN 2, A=Y <2

= - ;(Err,) + - ;WJ “

Where?, m and n are the performance ratio, the

size of B and the number of network weights,
respectively.

Using this performance function causes the
network to have smaller weights, and it forces the
network response to be smoother and less likely to
overfit [28]. The structure of BP network is shown in
Figure 2.

Generalized regression (GR) neural networks due
to their fast training, generality and simplicity are
popular. They are two layers feed-forward networks.
The hidden layer consists of RBF neurons with
Gaussian activation functions. The outputs of RBF
neurons have significant responses to the inputs only
over a range of values called the receptive field. The
radius of the receptive field allows the sensitivity of
the RBF neurons to be adjusted. During the training,
the receptive field radius of RBF neurons is such
determined as the neurons could cover the input space
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properly. The output layer neurons produce the linear
weighted summation of hidden layer neurons
responses.

To train the hidden layer of RBF networks no
training is accomplished and the transpose of training
input matrix is taken as the layer weight matrix [29].

W, =AT ©)

where, Wi and AT are input layer weight and
training input matrices, respectively.

The second layer weight matrix is set to the
desired output (target).

WZ = T (7)

in which T is the target matrix, and W is the
output layer weight matrix.

GR algorithm is based on nonlinear regression
theory, a well-established statistical technique for
function estimation. Simple structure of the GR
enables learning in stages, gives a reduction in the
training time, and this has led to the application of
such networks to many practical problems. The
structure of GR network is shown in Figure 3.

Hidden Layer

Input Layer |(| ‘ Output Layer

Fig2. The structure of BP network

Hidden Layer

Input Layer |(| | Output Layer

Fig3. The structure of GR network

4. Result and discussions

A computer code is developed in MATLAB to
implement the present ANN models. Two types of
networks are chosen to predict the performance and

emissions of DI engine fuelled with the mixture of
diesel and biodiesel fuels. The predictions of two ANN
models for the performance and emissions formation
parameters of the dual fuel DI diesel engine are shown
in figures 4-13
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In order to evaluate the accuracy of approximate
parameters predicted by the BP and GR networks, two
evaluation metrics are used: the relative root mean
square (R-rmse) error and R-square (R2) statistic
measurement. The R-rmse error between the exact and
predicted parameters is computed as follows:

1 T2y 1 21-110.5
r_lizﬂ:(ii—ﬂa) )(Fg(&-) )71

R-rmse=](
- )

Where, Ai and z are the ith component of the exact
and predicted parameters, respectively. The vectors
dimension is expressed by r.

To measure how successful fitting is achieved
between exact and approximate parameters, the R-

square statistic measurement is employed.
Statistically, the R-square is the square of the
correlation between the predicted and the exact
parameters. It is defined as follows:

R -square =1~ (3 (4= 4))Q_ (A= 4"

= = (9)
where 4 is the mean of exact vectors component.

A summary of results are given in Table 4 in terms
of R-rmse and R-square associated with parameters
predicted by BP and GR neural networks.

The results demonstrate that the generalization
ability of both BP and GR neural networks are good
and GR presents slightly better accuracy compared
with GR.

1 -
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0 T T T
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Fig4. Comparison of excess air ratio coefficient predictions by GR and BP neural networks with experimental data for B10.

1.1
1 ——exact
09 | —=—GR
0.8 BP

0.7 - /'\\

0.6 - i"—"ff R SR
0.5 4

0.4 -

normalized bsfc (gr/kw.hr)

0.3

0.2 o

/\”\-\4

—

0.1 T T T
1 3 5 7

sample

11 13 15 17

Fig5.Comparison of bsfc predictions by GR and BP neural networks with experimental data for B10.
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Fig6.Comparison of brake power predictions by GR and BP neural networks with experimental data for B10.
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Fig7.Comparison of torque predictions by GR and BP neural networks with experimental data for B10.
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Fig8.Comparison of exhaust gas temperature predictions by GR and BP neural networks with experimental data for B10.
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Fig9. Comparison of CO2 concentration predictions by GR and BP neural networks with experimental data for B10.
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Fig10. Comparison of O2 concentration predictions by GR and BP neural networks with experimental data for B10.
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Figll. Comparison of CO concentration predictions by GR and BP neural networks with experimental data for B10.
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Figl2. Comparison of NOx emission predictions by GR and BP neural networks with experimental data for B10.
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Fig13. Comparison of PM emission predictions by GR and BP neural networks with experimental data for B10.

5. Conclusions:

BP and GR neural networks are utilized to
approximate the performance and emissions of direct
injection diesel engine fuelled with the mixtures of
diesel and castor oil fuels. The comparison of the
predicted values shows that the generality accuracy of
GR is better than that of the BP. however both neural
network models provide good results. But speed of
training process of the GR is very high compared with
the BP. Finally, it can be concluded that GR can be
used to predict performance and emissions with high
accuracy at very fast training. It is necessary to
mention that the training time of the BP and GR
neural networks are 12 min and 0.1 min, respectively.
This clearly indicates that the training process of GR
can be achieved very faster than that of the BP neural
network.
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