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Abstract 

In this research, back-propagation (BP) and generalized regression (GR) GR neural networks are developed 

for predicting the performance and emissions of direct injection diesel engine fuelled with the mixtures of 

diesel and castor oil fuels. The neural network models for the engine were trained by using some of the 

experimental data. Experimental test are carried out on a semi-heavy duty Motorsazan MT4.244 direct 

injection diesel engine fuelled with blends of diesel fuel with 0%, 5%,10%,15%,20%, 30% of Castor 

oil%(by volume)  at various speeds and loads. Then, the performance of these neural networks predictions 

are compared by comparing predictions with the experimental results which were not used in the training 

process. The comparison of the predicted values shows that the computational accuracy of both GR and BP 

neural networks are appropriate, however the GR presents slightly better performance with very faster 

training compared with the BP. therefore, it can be concluded that GR can be used to predict performance 

and emissions with high accuracy and faster training. 

Keywords: neural network, back-propagation, generalized regression, emission, performance, biodiesel. 

1. Introduction 

Despite growth of fuel demand, dwindling 

resources is a crisis for science and technology [1, 2]. 

Diesel fuel is respected in commerce of countries due 

to it uses in comprehensive range as heavy-duty 

transport vehicles, rail transportation systems, 

agricultural machineries and construction 

equipments[3]. Nowadays, most of developed 

countries have found a suitable approach to overcome 

the fuel sources leakage and environment pollution, 

with mass production and commercialization of 

bioenergy [1, 2]. Biodiesel is one of the biofuels that 

is known as an alternative biofuel in order to reduce 

emissions produced from combustion engines [4, 5]. 

Biodiesel is produced from transestrification reaction 

of vegetables oil (fresh or waste) or animal fats with 

alcohol in presence of a catalyst [5, 6]. Biodiesel fuel 

has positive influence on engine emissions. It reduces 

particular matter (PM), CO and SOx [3]. 

NOx emissions increase as a drawback of 

biodiesel fuel blends, depending on its percentage in 

fuel, [3, and 7]. Also biodiesel has other 

disadvantages including lower calorific value and 

power output which should be improved [7]. 

Biodiesel will be more industrialized and 

commercialized when it is produced from non-edible 

and cheap raw oil sources [5]. Monyem et al. [8] 

showed that fuel properties of biodiesel might be 

varied by oxidation after the biodiesel was stored for 

a period of time. They found that after the heating and 

bubbling oxygen, the commercial biodiesel had a 

shorter ignition delay and lower hydrocarbons (HC) 

emission. Dorado et al. [9] carried out experimental 

test in a direct injection diesel engine with olive oil 

methyl ester and reported a same combustion 

efficiency for methyl ester of olive oil and diesel, a 

slight reduction in brake specific fuel consumption 

(BSFC), reduction of 58.9% in CO, 8.9% in CO2, 

37.5% in NO and 32% in NOx for olive oil methyl 

ester as compared to diesel.  Puhan et al. [10] tested 

mahua oil ethyl ester in a four-stroke naturally 

aspirated direct injection diesel engine and have 

reported an increase in BSFC for mahua oil ethyl 

ester compared to diesel. Also, a slight increase in 

brake thermal efficiency, reduction in CO emission, 

increase in CO2 emission, 63% reduction in HC 

emission, reduction in NOx and 70% reduction in 

smoke are reported. Buyukkaya [11] tested neat 

rapeseed oil and its blends of 5%, 20% and 70%, and 

standard diesel fuel in a diesel engine and concluded 

that the use of biodiesel produces lower smoke 

 [
 D

ow
nl

oa
de

d 
fr

om
 c

ef
ss

e.
iu

st
.a

c.
ir

 o
n 

20
25

-1
0-

21
 ]

 

                             1 / 10

http://onlinelibrary.wiley.com/doi/10.1111/j.1469-7998.1981.tb04588.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1469-7998.1981.tb04588.x/abstract
https://cefsse.iust.ac.ir/ijae/article-1-314-en.html


1000         A comparative analysis of … 

International Journal of Automotive Engineering    Vol. 5, Number 2, June 2015 

opacity, and higher brake specific fuel consumption 

(BSFC) compared to diesel fuel and the measured CO 

emissions of B5 and B100 fuels were found to be 9% 

and 32% lower than that of the diesel fuel, 

respectively. Jiafeng et al. [12] showed that lower 

heating value, lower volatility, higher viscosity, 

generally higher oxides of nitrogen (NOx) and high 

production cost, are some of biodiesel’s negative 

attributes. Rao et al. [13] studied the effects of the 

percentage of used cooking oil methyl ester 

(UCOME) on combustion characteristics (ignition 

delay, peak cylinder pressure, heat release rate). It 

was observed that the ignition delay periods of 

UCOME and its blends are significantly lower than 

that of diesel and decrease with increase in the 

percentage of UCOME. Also, the results show that 

the peak cylinder pressure is slightly higher for 

UCOME-diesel blends compared to diesel. This 

shows that the peak pressure is not very much 

affected using UCOME and its blends compared to 

diesel. The maximum heat release rate decreases with 

increase in percentage of UCOME in the blend. It can 

also be observed that maximum heat release rate 

occurs earlier with the increase in the percentage of 

UCOME in the blend. Tsolakis et al. [14] studied the 

combustion characterizes of rapeseed methyl ester 

(RME) pure or blended with ultra-low sulphur diesel 

(ULSD) at 20% and 50% by volume (B20 and B50) 

in a single-cylinder direct injection diesel engine with 

pump–line–nozzle injection system. The combustion 

of RME, B20 and B50 resulted in advanced 

combustion compared to ULSD. The advanced RME 

combustion resulted in the reduction of smoke, HC 

and CO while both NOx emissions and fuel 

consumption were increased. The combustion of 

different fuel blends did not affect significantly the 

engine efficiency. The increased amount of oxygen in 

the RME molecule and hence in the locally fuel-rich 

combustion zones is believed to be an additional 

reason for the reduced smoke. The increase of the fuel 

consumption is mainly due to the lower calorific 

value (LCV) of RME compared to ULSD. The use of 

EGR was more effective in the case of biodiesel 

blends combustion compared to ULSD combustion. 

The NOx emissions were reduced at levels similar to 

those of ULSD with the use of similar volumetric 

percentages of EGR while the smoke was kept low.     

Manufacturing and application engineering always 

wants to know the emissions and performance 

parameters of a diesel engine fuelled with the various 

mixtures of diesel and biodiesel fuels.  These 

requirements can be realized by performing various 

experimental tests or modeling the engine operations. 

Testing the engine at all operating conditions and 

various fuel mixtures are time consuming and 

expansive. Besides, developing an accurate model for 

the operation of dual fuel diesel engine is too difficult 

due to the complex process involved. As an 

alternative, performance and emissions of a dual fuel 

engine can be modeled using by neural networks. 

This modeling technique can be applied for predicting 

desired parameters when the enough experimental 

data is provided for training. The neural network 

modeling has been used to predict of performance of 

different thermal systems [15-20]. The use of neural 

networks for modeling the various operations of 

internal combustion engines is a more recent 

progress. Theses modeling were used for predicting 

of performance and emissions and air-fuel ratio of a 

diesel engine [21-24]. Wai Kean Yap et al. [25] 

presented a comparison of predictive models for the 

estimation of engine power and tailpipe emissions for 

a 4 kW gasoline scooter.  They used three emissions 

predictive models in their study; direct and series 

artificial neural network (ANN) models and a 

MATLAB dynamic model. They were compared and 

analyzed two multilayered networks; the back 

propagation (BP) and optimization layer-by-layer 

(OLL) algorithms for the ANN models. It was found 

that the OLL network properly can predict with a 

maximum mean relative error of 1.78% and 1.38% 

for the direct and series predictive model respectively. 

Also they showed that the series neural network 

model gives the most accurate predictions, with MRE 

of 0.63% and 0.47% for the engine power and 

emissions respectively.  

 As can be seen in the relevant literature, there are 

a no attempts about the using GR neural network 

model for predicting of performance and emissions 

formation in dual fuel DI diesel engines up to now. In 

the present work, beside the BP neural network, the 

GR model is also developed to predict performance 

and emissions of DI engine fuelled with the mixture 

of diesel and biodiesel fuels. The numerical results 

demonstrate the computational advantages of the GR 

in comparison with the BP. The experimental data for 

B0 B5, B15, B20 and B30 at various loads and speeds 

are used for training and the test of these neural 

networks carried out by B10. 

2. Experimental setup and methodology  

This study is done in Motorsazan.Co and the 

engine under study is a commercial DI, water cooled 

four cylinders, in-line, turbocharged aspirated diesel 

engine whose major specifications are shown in table 

1. The experiments were carried out at various 

loads(25%,50%,75% and 100%) and speeds( 1200, 

1400,1700,2000rpm) with the mixtures of diesel and 

biodiesel having 0%,5%,10%,15%, 20% and 30% 
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volumetric proportions of biodiesel were named as 

diesel fuel,B0 B5,B10,B15, B20 and B30, 

respectively. 

Figure1 shows schematic diagram of experimental 

set-up. An eddy current dynamometer with a load cell 

was coupled to the engine and used to load the 

engine.  An AVL GU 13G pressure transducer, 

mounted at the cylinder head and connected via an 

AVL Micro IFEM piezo amplifier to a data 

acquisition board, was used to record the cylinder 

pressure. The crankshaft position was measured using 

an AVL 365C digital shaft encoder. The test rig 

included other standard engine instrumentation such 

as thermocouples to measure oil, air, inlet manifold 

and exhaust temperatures and pressure gauges 

mounted at relevant points. Normal engine test bed 

safety features were also included. Atmospheric 

conditions (humidity, temperature, pressure) were 

monitored during the tests. The maximum fuel 

injection pressure was measured using another 

pressure transducer that is fitted to the high pressure 

fuel pipe between the pump and the injector. Data 

acquisition and combustion analysis were carried out 

using in-house developed Lab VIEW-based software. 

An AVL DiCom4000 gas analyzer was used to 

measure NOx, CO, and CO2, by NDIR (non-

dispersive infrared gas analysis), and oxygen (O2) 

concentrations in the exhaust manifold 

(electrochemical method). Smoke measured using an 

AVL 415S smoke meter. Table 2 shows measurement 

accuracy of instruments involved in the experiment 

for various parameters. The emission measurements 

at each mode were repeated five times. The averaged 

values of repeated measurements were used in the 

analysis. From the repeated data points, the 

repeatability of the engine experiments can be 

estimated. The standard deviations over the means of 

the emission data are shown in table3. It can be seen 

from table3 that NOx emission measurement 

repeatability is excellent, whereas all other 

measurements have good repeatability. 

 

 
Table 1. MT4.244 engine specifications. 

 

 

 

 

 

 

 

 

 

 

 

Table 2.Measurement accuracy 

NOX (AVL DiCom4000)                                                                                       1ppm 

Smoke (AVL 415S smoke meter)                                                                             0.1% 

CO (AVL Digas4000)                                                                                             0.01%   

Inlet & exhaust CO2 (AVL Digas4000 Light)                                                        0.01%     
 

Table3. Repeatability of measurements. 

Emissions        NOx PM Fuel Cons. 

Std. Dev./Mean % 0.85 4.2 0.3 

 

Number of intake valves 1per cylinder 

Number of cylinders 4-in line, vertical  

Volume displacement (lit) 3.99 

Max power 82 bhp@2000rpm 

Max torque 360 N.m@1400 rpm 

Combustion system  Direct injection 

Cooling  Water cooled with oil cooler 

Bore × Stroke (mm) 100 × 127 

Compression ratio 17.5:1 

Engine speed (rpm) 2000 

Aspiration Turbo charged 

Fuel injection DPA Pump 

Start of injection (deg BTDC) 4 

Duration of injection (deg) 20 

Number of nozzle orifice × diameter (mm) 5 × 0.276 

IVC to EVO (deg ATDC) -146 to 95 

Rate of fuel injected (kg/hr) 15.22 

Combustion chamber Reentrant 
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Fig1. Schematic diagram of experimental set-up

3. Neural Networks 

In this study, BP and GR neural networks are 

employed for predicting the performance and 

emissions of direct injection diesel engine fuelled 

with the mixtures of diesel and castor oil fuels. A 

brief description of the theoretical aspects of the 

above mentioned employed neural networks is given 

below. 

 3.1. Back-Propagation Neural Networks 

For training of back-propagation (BP) neural 

networks the gradient descent algorithms are usually 

employed. Second-order methods, such as Newton’s 

method, often converge faster than first-order 

methods, such as conjugate gradient methods. Using 

the second-order methods the weights are adjusted as 

follows:  

where kW  is a vector of current weights, kG is the 

current gradient, and 
1

kA
is the Hessian matrix of the 

performance index at the current values of the 

weights. 

Unfortunately, it is complex and expensive to 

compute the Hessian matrix for feed-forward neural 

networks. In this study, Levenberg-Marquardt (LM) 

[26] algorithm is employed to adjust the weights. The 

LM algorithm was designed to approach second-order 

training speed without having to compute the Hessian 

matrix. When the performance function has the form 

of a sum of squares, then the Hessian matrix can be 

approximated as: 

ErrG T
J                                                    (3) 

where J is the Jacobian matrix that contains first 

derivatives of the network errors with respect to the 

weights, and Err is a vector of network errors. 

The LM algorithm uses this approximation to the 

Hessian matrix in the following Newton-like update 

equation: 

where μ is a correction factor. The value of μ is 

decreased after each successful step and is increased 

only when a tentative step would increase the 

performance function. In this way, the performance 

function is always reduced at each iteration of the 

algorithm [27]. 

In this paper to prevent from over-fitting the 

performance function of the network is modified by 

adding a term that consists of the mean of the sum of 

squares of the network weights as follows: 







n

1j

2

j

1i

2

ireg
n

)γ1(
)Err(

γ
Err W

m

m

                    (5) 
Where γ

size of iErr  and the number of network weights, 

respectively. 

Using this performance function causes the 

network to have smaller weights, and it forces the 

network response to be smoother and less likely to 

overfit [28]. The structure of BP network is shown in 

Figure 2. 

Generalized regression (GR) neural networks due 

to their fast training, generality and simplicity are 

popular. They are two layers feed-forward networks. 

The hidden layer consists of RBF neurons with 

Gaussian activation functions. The outputs of RBF 

neurons have significant responses to the inputs only 

over a range of values called the receptive field. The 

radius of the receptive field allows the sensitivity of 

the RBF neurons to be adjusted. During the training, 

the receptive field radius of RBF neurons is such 

determined as the neurons could cover the input space 

   k

1

kk1k GWW 

  A                                            (1) 

JJH
T                                                                    (2)                                                                                                                                                                           

Err]μ[WW T1T

k1k JIJJ


                            (4)                                                                                                                               
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properly. The output layer neurons produce the linear 

weighted summation of hidden layer neurons 

responses.  

To train the hidden layer of RBF networks no 

training is accomplished and the transpose of training 

input matrix is taken as the layer weight matrix [29].  
T

1 ΛW                                                             (6) 

where, 1W and 
T

Λ are input layer weight and 

training input matrices, respectively.  

The second layer weight matrix is set to the 

desired output (target).  

TW 2                                                               (7) 

in which T is the target matrix, and 2W  is the 

output layer weight matrix.  

GR algorithm is based on nonlinear regression 

theory, a well-established statistical technique for 

function estimation. Simple structure of the GR 

enables learning in stages, gives a reduction in the 

training time, and this has led to the application of 

such networks to many practical problems. The 

structure of GR network is shown in Figure 3. 
 

 

 

Fig2. The structure of BP network 

 

 

Fig3. The structure of GR network 

4. Result and discussions 

A computer code is developed in MATLAB to 

implement the present ANN models. Two types of 

networks are chosen to predict the performance and 

emissions of DI engine fuelled with the mixture of 

diesel and biodiesel fuels. The predictions of two ANN 

models for the performance and emissions formation 

parameters of the dual fuel DI diesel engine are shown 

in figures 4-13 
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In order to evaluate the accuracy of approximate 

parameters predicted by the BP and GR networks, two 

evaluation metrics are used: the relative root mean 

square (R-rmse) error and R-square (R2) statistic 

measurement. The R-rmse error between the exact and 

predicted parameters is computed as follows: 

 

0.51

1

2

1

2 ]))(
1

))(
1-

1
[(rmseR 



 

r

i

i

r

i

ii λ
r

(λ
~

λ
r    (8) 

Where, λi and i

~


are the ith component of the exact 

and predicted parameters, respectively. The vectors 

dimension is expressed by r.  

To measure how successful fitting is achieved 

between exact and approximate parameters, the R- 

square statistic measurement is employed. 

Statistically, the R-square is the square of the 

correlation between the predicted and the exact 

parameters. It is defined as follows: 

1

1

2

1

2 ))()()((1squareR 



 

r

i

i

r

i

ii λλλ
~

λ

                     (9) 

where   is the mean of exact vectors component. 

A summary of results are given in Table 4 in terms 

of R-rmse and R-square associated with parameters 

predicted by BP and GR neural networks.  

The results demonstrate that the generalization 

ability of both BP and GR neural networks are good 

and GR presents slightly better accuracy compared 

with GR. 

 
Fig4. Comparison of excess air ratio coefficient predictions by GR and BP neural networks with experimental data for B10. 

 
Fig5. Comparison of bsfc predictions by GR and BP neural networks with experimental data for B10. 

 

Fig6. Comparison of brake power predictions by GR and BP neural networks with experimental data for B10. 
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Fig7. Comparison of torque predictions by GR and BP neural networks with experimental data for B10. 

 

 

Fig8. Comparison of exhaust gas temperature predictions by GR and BP neural networks with experimental data for B10. 

 

 

Fig9. Comparison of CO2 concentration predictions by GR and BP neural networks with experimental data for B10. 
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Fig10. Comparison of O2 concentration predictions by GR and BP neural networks with experimental data for B10. 

 

Fig11. Comparison of CO concentration predictions by GR and BP neural networks with experimental data for B10. 

 

 

Fig12. Comparison of NOx emission predictions by GR and BP neural networks with experimental data for B10. 
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Fig13. Comparison of PM emission predictions by GR and BP neural networks with experimental data for B10.

5. Conclusions: 

BP and GR neural networks are utilized to 

approximate the performance and emissions of direct 

injection diesel engine fuelled with the mixtures of 

diesel and castor oil fuels. The comparison of the 

predicted values shows that the generality accuracy of 

GR is better than that of the BP. however both neural 

network models provide good results. But speed of 

training process of the GR is very high compared with 

the BP. Finally, it can be concluded that GR can be 

used to predict performance and emissions with high 

accuracy at very fast training. It is necessary to 

mention that the training time of the BP and GR 

neural networks are 12 min and 0.1 min, respectively. 

This clearly indicates that the training process of GR 

can be achieved very faster than that of the BP neural 

network. 
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