This paper presents a novel population-based meta-heuristic algorithm inspired by the game of tug of war. Utilizing a sport metaphor the algorithm, denoted as Tug of War Optimization (TWO), considers each candidate solution as a team participating in a series of rope pulling competitions. The teams exert pulling forces on each other based on the quality of the solutions they represent. The competing teams move to their new positions according to Newtonian laws of mechanics. Unlike many other meta-heuristic methods, the algorithm is formulated in such a way that considers the qualities of both of the interacting solutions. TWO is applicable to global optimization of discontinuous, multimodal, non-smooth, and non-convex functions. Viability of the proposed method is examined using some benchmark mathematical functions and engineering design problems. The numerical results indicate the efficiency of the proposed algorithm compared to some other methods available in literature.
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |