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ABSTRACT 
 

This study aimed to develop and optimize artificial stone mix designs incorporating 

microsilica using artificial neural networks (ANNs) and metaheuristic optimization 

algorithms. Initially, 10 base mix designs were prepared and tested based on previous 

experience and literature. The test results were used to train an ANN model. The trained 

ANN was then optimized using SA-EVPS and EVPS algorithms to maximize 28-day 

compressive strength, with aggregate gradation as the optimization variable. The optimized 

mixes were produced and tested experimentally, revealing some discrepancies with the ANN 

predictions. The ANN was retrained using the original and new experimental data, and the 

optimization process was repeated iteratively until an acceptable agreement was achieved 

between predicted and measured strengths. This approach demonstrates the potential of 

combining ANNs and metaheuristic algorithms to efficiently optimize artificial stone mix 

designs, reducing the need for extensive physical testing. 
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1. INTRODUCTION 
 

Artificial stone has emerged as an innovative and advanced material in the construction 

industry, gaining increasing attention from architects and designers due to its unique 

properties such as durability, aesthetics, and design flexibility [1]. Unlike natural stones, 
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artificial stones can be easily produced in various shapes and colors to meet project 

requirements, making them a popular choice in construction projects [2, 3]. One effective 

additive for producing an artificial stone that is explored in this research is microsilica. 

Microsilica, also known as silica fume, is an ultrafine mineral material with specific physical 

and chemical properties that play a significant role in improving the mechanical properties 

and durability of artificial stone [4]. Microsilica can increase compressive strength and 

reduce permeability, which contributes to increasing the service life and performance of this 

material [5]. The use of artificial stones is not only important due to their technical and 

aesthetic properties but also as a sustainable alternative to natural decorative stones. Given 

the increasing trend of natural stone extraction, which in some cities and regions with rich 

mines is carried out excessively, this process has led to disruption of local ecosystem 

balance and environmental problems such as habitat destruction and severe pollution in 

extraction areas [6]. By using artificial stones, the need to extract resources that have 

naturally formed over generations can be reduced, thus contributing to environmental 

protection and biodiversity conservation [7]. 

In recent decades, issues such as excessive consumption of natural resources, air 

pollution, global warming, energy consumption, and waste disposal have fueled global 

concerns about the environment [8, 9]. In construction projects, the concept of sustainability 

has been recognized as a key element in reducing adverse environmental impacts [10]. The 

sustainability assessment of building materials helps to understand the positive and negative 

effects of a project so that decision-makers can use this assessment to select appropriate 

materials according to the specific needs of the project in a particular region [11-13]. 

Although the demand of future generations is not precisely predictable [14], meeting the 

needs of the current generation with the least environmental, economic, and social impacts 

can ensure sustainable resources for future generations [15]. In this context, some 

researchers have focused on utilizing waste in the production of construction materials [16]. 

For example, Kolombe et al used fly ash to produce sustainable concrete, while Maier 

utilized wood waste in the production of wooden elements as construction materials. Omer 

and Naguchi noted that sustainable development plays a vital role in creating sustainable 

construction projects [17-19]. 

 The global population growth and the subsequent increase in housing demand have 

resulted in a higher need for concrete and cement, leading to environmental challenges. One 

promising solution to address these issues is the use of pozzolanic materials, specifically 

travertine sludge, as a partial substitute for cement. In this context, Hosseini et al. have 

introduced the utilization of travertine sludge as a sustainable development strategy. 

Research has shown that incorporating travertine sludge can exhibit specific behaviors in 

terms of compressive and flexural strength of concrete, functioning effectively as a suitable 

alternative to cement at certain proportions [20]. 

The World Bank now only finances construction projects that comply with sustainable 

environmental, social and economic standards [21]. To achieve sustainable development in 

construction, CEN TC350 recommends the use of materials with recycled content and lower 

life cycle considering environmental impacts, compatibility, high flexibility to prevent 

destruction, ability to assemble and disassemble, greater durability and strength [22-24].  

This research focuses on using microsilica powder as an additive to stabilize the 

mechanical properties of artificial stone. Microsilica powder, also known as silica fume, 
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with its unique characteristics, has significant effects on the quality and performance of 

artificial stones. Microsilica is a mechanical strength enhancer and due to its fine grains and 

pozzolanic properties, it increases the compressive, flexural and tensile strength of 

concrete[25, 26]. It also reduces the permeability of concrete, thereby increasing resistance 

to water and chemicals, which prevents damage caused by freezing and thawing [27]. 

The addition of microsilica can help improve concrete workability as it allows for a 

reduction in the water-to-cement ratio, resulting in concrete with higher workability and 

strength [27]. It also helps reduce shrinkage during concrete drying, thus preventing 

cracking problems. Finally, given the positive effects of microsilica on the final color and 

texture of stone, this additive helps create a more uniform and beautiful appearance in 

artificial stones [28,29]. 

The main objective of this study was to optimize artificial stone mix designs 

incorporating microsilica using artificial neural networks (ANNs) and metaheuristic 

optimization algorithms. The specific aims were to: 

1. Develop base mix designs for artificial stone with microsilica. 

2. Train an ANN model using experimental results from the base mixes. 

3. Optimize the mix designs using SA-EVPS and EVPS algorithms coupled with the 

ANN model. 

4. Validate and iteratively improve the optimization process through experimental 

testing. 

 

 

2. MATERIALS AND METHODS 
2.1 Materials 

The main materials used in this study for producing artificial stone samples were: 

• Cement: Type II Portland cement 

• Aggregates: Crushed stone aggregates passing 3/8 inch and retained on No. 4 sieve  

• Microsilica powder 

• Water 

• Superplasticizer admixture 

2.2 Mix Design  

Ten base mix designs (MSAS01-MSAS10) were initially developed based on previous 

experience and literature. The mix proportions and particle size distributions of these 

mixtures are illustrated in Figures 1 and 2. 

 

2.3 Sample Preparation 

The materials were batched by weight according to the mix designs. Mixing was 

performed in an electric mixer following ACI 318 [30] guidelines. The fresh mix was cast 

into 150 mm cube molds for compressive strength testing and 100 x 100 x 500 mm beam 

molds for flexural strength testing. Samples were de-molded after 24 hours and cured in 

water at 19-23°C until the testing age. Figure 3 shows the electric mixer used for blending 

the artificial stone components, ensuring thorough and consistent mixing of the materials. 
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Figure 1: Cement, Water, and Microsilica Content in MSAS Mixtures 

 
Figure 2: Particle Size Distribution Curves for 10 MSAS Mixtures 

 

 
Figure 3: Artificial Stone Mixing Process 
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Figure 4 displays the molds used for casting the artificial stone samples and freshly 

prepared specimens, showcasing the initial stages of the sample preparation process. 

 

2.4 Testing Methods 

The following tests were conducted on the hardened samples: 

➢ Compressive strength: 150 mm cubes were tested at 7, 28, and 90 days according to 

ASTM C39 [31]. 

➢ Flexural strength: 100 x 100 x 500 mm beams were tested at 7, 28, and 90 days 

using the three-point loading method as per ASTM C78 [31]. 

➢ Water penetration: Tested according to EN 12390-8 on 150 mm cubes at 28 days 

[31]. 

Figure 5 shows an artificial stone sample after undergoing compressive strength testing, 

illustrating the typical failure pattern observed. 

 
Figure 4: Sample Preparation and Molding 

 

 
Figure 5: Compression Test Sample 
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Figure 6 demonstrates the setup for the flexural strength test, showing the three-point 

bending configuration used to evaluate the artificial stone samples' performance under 

bending stress. 

 

2.5 Artificial Neural Network Model 

A feedforward backpropagation neural network was developed using MATLAB Neural 

Network Toolbox [32-35]. The network architecture consisted of an input layer with 6 

neurons (corresponding to the mix proportions), two hidden layers with 10 neurons each, 

and an output layer with 1 neuron (compressive strength). The hyperbolic tangent sigmoid 

transfer function was used for the hidden layers and a linear transfer function for the output 

layer. The network was trained using the Levenberg-Marquardt algorithm. 

The experimental results from the 10 base mixes were used to train, validate and test the 

ANN model. 70% of the data was used for training, 15% for validation, and 15% for testing. 

The model performance was evaluated using mean squared error (MSE) and coefficient of 

determination (R2) [36]. 

 
Figure 6: Flexural Strength Test Configuration 

 

2.6 Optimization Using Metaheuristic Algorithms 

The trained ANN model was used as the objective function for optimization using two 

metaheuristic algorithms: 

- Enhanced Vibrating Particles System (EVPS) [37,38] 

- Self-Adaptive Enhanced Vibrating Particles System (SA-EVPS) [39,40]  

The optimization problem was formulated to maximize the 28-day compressive strength 

while satisfying practical constraints on mix proportions. The aggregate gradation 

parameters were used as the optimization variables. 

The algorithms were implemented in MATLAB with a population size of 20 and 

maximum 500 iterations. For EVPS, the control parameters were set as: p = 0.05, w1 = 0.2, 

w2 = 0.3, HMCR = 0.95, PAR = 0.1, Neighbor = 0.1, and Memory_size = 4. For SA-EVPS, 

the parameters were adaptively tuned during the optimization process.  

 



OPTIMIZATION OF ARTIFICIAL STONE MIX DESIGN USING … 

 

451 

2.7 Experimental Validation and Iterative Improvement 

The top optimized mix designs predicted by the algorithms were produced and tested 

experimentally. The measured strengths were compared to the ANN predictions. The new 

experimental data was then used to retrain the ANN model, and the optimization process 

was repeated. This iterative process continued until an acceptable agreement was achieved 

between predicted and measured strengths. 

To better illustrate the optimization process used in this study, Figure 7 presents a 

flowchart of the methodology, and the following pseudocode outlines the step-by-step 

procedure: 

 
Figure 7: Flowchart of the optimization process for artificial stone mix design 
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Table 1: Pseudocode for Artificial Stone Mix Design Optimization using ANN and 

Metaheuristic Algorithms 

Step Description 

1 Define 10 base mix designs 

2 Create laboratory samples for 10 base designs 
3 Perform compressive strength tests at 7, 28, and 90 days 

4 
Train Artificial Neural Network (ANN) using data from 10 base 

designs 

5 Define objective function: inverse of 28-day compressive strength 

6 

Run EVPS optimization algorithm: 

Set EVPS parameters 

Execute EVPS for 500 iterations 

Store best mix design and objective function value 

7 

Run SA-EVPS optimization algorithm: 

Set initial SA-EVPS parameters 

Execute SA-EVPS for 500 iterations with self-adapting parameters 

Store best mix design and objective function value 

8 Create laboratory samples for best EVPS and SA-EVPS designs 

9 Perform a 28-day compressive strength test for new samples 

10 Compare ANN-predicted results with laboratory results 

11 If needed, retrain ANN by adding new data 

12 Repeat steps 6 to 11 until satisfactory convergence 

13 
Report final best mix design and corresponding compressive 

strength 

 

3. RESULTS AND DISCUSSION 
 

3.1 Experimental Results for Base Mixes 

The compressive strength, flexural strength, and water penetration results for the 10 base 

mixes are presented in Figures 8, 9, and 10, respectively. 

Figure 8 shows the compressive strength development of the 10 base mixes (MSAS01-

MSAS10) at 7, 28, and 90 days. The bar graph allows for easy comparison of strength gains 

across different mix designs and curing ages. 

Figure 9 illustrates the flexural strength results for the 10 base mixes (MSAS01-

MSAS10) at 7, 28, and 90 days. The bar graph demonstrates the progression of flexural 

strength over time for each mix design. 

Figure 10 presents the water penetration depths for the 10 base mixes (MSAS01-

MSAS10). The bar graph provides a clear visual representation of the variation in water 

resistance properties across different mix designs. 
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Figure 8: Compressive Strength Results for Base Mixes 

 
Figure 9: Flexural Strength Results for Base Mixes 

 

 
 Figure 10: Water Penetration Results for Base Mixes 



P. Hosseini, A. Kaveh, A. Naghian, and A. Abedi 

 

454 

Considerable variation in strength and durability properties can be observed among the 

base mixes. As shown in Figure 8, the 28-day compressive strengths are found to range from 

approximately 31 MPa (MSAS04 and MSAS08) to 55 MPa (MSAS03), with most mixes 

falling between 35-50 MPa. Figure 9 demonstrates that the 28-day flexural strengths vary 

from about 4.24 MPa (MSAS08) to 11.63 MPa (MSAS02). Water penetration depths, as 

illustrated in Figure 10, are measured between 22 mm (MSAS04) and 50 mm (MSAS03), all 

of which are within the acceptable limit of 70 mm. 

It is observed that the addition of microsilica generally improves the mechanical 

properties and reduces permeability, as evidenced by the performance of certain mixes. For 

instance, MSAS02 and MSAS03 exhibit notably higher compressive and flexural strengths 

compared to other mixes, which may be attributed to optimized microsilica content. This 

improvement can be explained by the pozzolanic reaction of microsilica with the calcium 

hydroxide produced during cement hydration, resulting in the formation of additional C-S-H 

gel that densifies the microstructure [41]. 

It is noted that the strength development patterns vary among mixes, with some 

displaying more significant gains between 7 and 90 days than others. This variation suggests 

that the microsilica content and other mix design parameters have a substantial influence on 

both early-age and long-term strength development. 

The optimized mix design obtained by the SA-EVPS algorithm resulted in an artificial 

stone sample with improved surface quality and mechanical properties. Figure 11 shows the 

surface texture of the optimized artificial stone sample, demonstrating a uniform distribution 

of aggregates and a smooth finish, which is indicative of the enhanced mix proportions 

determined by the SA-EVPS algorithm. 

 
Figure 11: Surface Texture of Optimized Artificial Stone Sample (SA-EVPS) 

 

3.2 ANN Model Performance 

The performance of the trained Artificial Neural Network (ANN) model in predicting the 
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28-day compressive strength of artificial stone samples was evaluated using statistical 

measures. The model demonstrated a strong predictive capability, achieving a high 

coefficient of determination (R²). This R² value indicates that a significant portion of the 

variance in the compressive strength can be explained by the mix design parameters used as 

inputs to the ANN model. 

The mean squared error (MSE) of the model predictions was calculated to provide insight 

into the accuracy of the predictions. When considered in the context of the range of 

compressive strengths observed in the experimental data, the MSE value suggests that the 

model's predictions are reasonably accurate for most practical purposes. 

To further assess the model's performance, we analyzed the distribution of prediction 

errors. The majority of the predictions fell within one standard deviation of the measured 

values, which is consistent with the expectations for a well-performing model. Additionally, 

the model showed no systematic bias towards over- or under-prediction across the range of 

compressive strengths, indicating a balanced performance across different mix designs. 

The ANN model's ability to capture the complex, non-linear relationships between mix 

design parameters and compressive strength demonstrates its potential as a valuable tool for 

optimizing artificial stone compositions. However, it is important to note that while the 

model performs well overall, there is still room for improvement, particularly in reducing 

the prediction error for mix designs at the extremes of the compressive strength range. 

This level of performance provides confidence in using the ANN model as part of the 

optimization process, allowing for rapid evaluation of potential mix designs without the 

need for extensive physical testing. Nonetheless, as with any predictive model, it is crucial 

to validate the optimized designs through experimental testing to ensure the reliability of the 

final product. The model's performance supports its use in the subsequent optimization 

steps, where it serves as a surrogate for time-consuming and resource-intensive laboratory 

tests. 

 

3.3 Optimization Results 

The optimization algorithms were run for 500 iterations to maximize the 28-day 

compressive strength. The convergence curves for EVPS and SA-EVPS are shown in Figure 

12. 

Both algorithms converged to optimal solutions, with SA-EVPS showing faster 

convergence and better final results. The best compressive strength achieved by EVPS was 

59.98 MPa, while SA-EVPS reached 62.72 MPa. These results demonstrate the superior 

performance of the SA-EVPS algorithm in this optimization problem. In Figure 13, the 

particle size distribution curves for the optimized mixes obtained by EVPS and SA-EVPS 

algorithms are presented. The x-axis represents the sieve sizes in reverse logarithmic scale, 

while the y-axis shows the percent passing. It can be observed that both optimization 

algorithms resulted in similar aggregate gradations, with slight variations in the distribution 

of particle sizes. It is observed that the SA-EVPS algorithm produced a mix with higher 

compressive strength and slightly different proportions of components compared to the 

EVPS algorithm. 
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Figure 12: Convergence curves for best of EVPS and SA-EVPS algorithms 

 
Figure 13: Particle Size Distribution Curves for Optimized Mixes 

 

Figure 14 illustrates the cement, water, and microsilica content in the optimized mixes 

produced by EVPS and SA-EVPS algorithms. The x-axis represents the optimization 

algorithms, while the y-axis shows the amount of each component in kg/m³. It is noted that 

the SA-EVPS algorithm resulted in slightly higher contents of all three components 

compared to the EVPS algorithm. 
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Figure 14: Cement, Water, and Microsilica Content in Optimized Mixes 

 

 

4. CONCLUSIONS AND FUTURE WORK 
 

This study demonstrated the effectiveness of combining artificial neural networks with 

metaheuristic optimization algorithms for developing high-performance artificial stone mix 

designs. The key findings are: 

• The ANN model was able to predict compressive strength with reasonable accuracy 

based on mix proportions. 

• Both EVPS and SA-EVPS algorithms successfully optimized the mix designs to 

maximize compressive strength, with SA-EVPS showing slightly better 

performance. 

• The iterative process of experimental validation and model retraining improved the 

prediction accuracy and led to optimized mixes with 28-day compressive strengths 

exceeding 570 MPa. 

• The incorporation of microsilica in optimized mixes resulted in significant 

improvements in mechanical properties and durability compared to conventional 

mixes. 

This approach can significantly reduce the time and resources required for mix design 

optimization compared to traditional methods. Future work could explore the use of multi-

objective optimization to simultaneously optimize strength, durability, and cost. Additional 

research directions include expanding the experimental program to cover a wider range of 

mix proportions, developing multi-output ANN models to predict multiple properties 

simultaneously, and investigating other machine learning techniques for mix design 

optimization. Incorporating sustainability metrics into the optimization process and 

extending the approach to other construction materials could further enhance the 

applicability of these computational methods in sustainable construction practices. 
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