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ABSTRACT 
 

The optimization process of space structures considering the nonlinear material behavior 

requires significant computational efforts due to the large number of design variables and 

the complexities of nonlinear structural analysis. Accordingly, the Force Analogy Method 

(FAM) serves as an efficient tool to reduce computational workload and enhance 

optimization speed. In this study, the weight optimization of space structures in the inelastic 

region under seismic loading is carried out using the Shuffled Shepherd Optimization 

Algorithm (SSOA), with the nonlinear structural analysis based on the FAM. To do this, the 

FAM formulation for axially loaded members of space structures under seismic forces is 

presented. Subsequently, weight optimization is performed on two double-layer space 

structures: a flat double-layer structure with 200 members and a barrel vault structure with 

729 members under the Kobe earthquake record. Based on the results, the optimized design 

using the inelastic behavior showed that the FAM provided accurate results when compared 

to the precise nonlinear structural analysis. The optimized design based on the FAM is 

considered acceptable, and the computational time for the optimization process has been 

significantly reduced.  
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1. INTRODUCTION 
 

Throughout their service life, many structures may undergo inelastic deformations when 

subjected to various loads, including seismic forces. Space structures, due to their specific 

applications in industries, are no exception. These structures feature members that 

experience axial deformations, which can also result in inelastic deformations under external 

forces such as seismic loads. The onset of inelastic deformations depends on the magnitude 

of these external forces and the structural parameters of the space structure. Thus, space 

structures under seismic forces are expected to exhibit nonlinear behavior, with inelastic 

deformations in their members. Therefore, it is essential to utilize an optimal and effective 

method for nonlinear analysis of space structures when simulating the behavior of axially 

loaded members under both static and dynamic loads. However, the traditional approaches 

in nonlinear Finite Element (FE) analysis for optimal design, especially for space structures, 

are time-consuming and computationally expensive. Therefore, it is crucial to develop a 

simple yet accurate dynamic analysis technique for optimal design and to establish a method 

that models nonlinear behavior at an optimal cost within a reasonable time frame. The Force 

Analogy Method (FAM) is an effective strategy for analyzing various structures with 

nonlinear behavior, including space structures. This method is based on the residual 

(inelastic) displacement, where the nonlinear material behavior is represented by changes in 

the displacement vector instead of changes in the stiffness matrix of the structure. The FAM 

formulates an inelastic deformation as a single Degree of Freedom (DOF), and the stiffness 

matrix of the structure is calculated once during the nonlinear analysis process [1]. Thus, the 

FAM is expected to accelerate the optimization process for space structures with numerous 

members. Since the most time-consuming step in the optimization process is the structural 

analysis, particularly the nonlinear analysis, the FAM can significantly enhance the 

efficiency of the optimization process for structures with nonlinear behavior. 

In recent years, extensive research has been conducted to apply optimization algorithms 

to solve various engineering problems. Most of the earlier studies on structural optimization 

assumed linear material behavior, with nonlinear behavior being addressed only in a few 

cases [2-4]. Other studies have developed techniques for nonlinear structural analysis, 

focusing primarily on improving computational speed and accuracy. Wong and Yang (1999) 

were among the first researchers to apply the FAM to structural engineering. In their study, 

the FAM was formulated in force-deformation space, and a nonlinear dynamic analysis was 

performed. The FAM was applied using inelastic deformations modeled as a 1-DOF system, 

with the stiffness matrix being calculated and applied only once during the nonlinear 

dynamic analysis [5]. Wong and Wang (2007) proposed an FAM-based analytical technique 

for inelastic dynamic analysis. Their study investigated the displacements at plastic hinges at 

the ends of members and the rigid panel zones of moment-resisting frames. The technique 

determined the required stiffness matrix for members with rigid ends using the displacement 

method, followed by static condensation to modify the stiffness matrix. Numerical 

simulations were conducted for seismic analysis of a single-degree-of-freedom system. The 

results indicated that the end displacements of plastic hinges significantly affected the 

seismic response of the structure and must be considered in dynamic analysis [6]. Song and 

Li (2012) conducted an analysis of steel structures using the FAM. They proposed a novel 

FAM-based approach to study the inelastic behavior of steel structures under dynamic loads. 
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The model assumed nonlinear behavior for the steel frame and plastic hinges at both ends of 

the beam. The results, including graphs of maximum interstorydisplacement and the flexural 

resistance moments in the plastic hinges, demonstrated that the proposed method was faster 

and more accurate than conventional methods in simulating the nonlinear behavior of 

structures [7]. Li et al. (2013) used a physical theory-based model within the FAM. The 

model provided an accurate, efficient, and stable method for dynamic analysis in the state-

space. The results showed that the model was relatively simple and efficient, providing 

acceptable results [8]. In 2013, Li et al. proposed a formulation for analyzing seismic 

damage in reinforced concrete (RC) frames using the FAM, considering stiffness 

deterioration. The model assumed the ends of beams and columns to be damaged hinges to 

represent cracking damage. The results demonstrated the effectiveness of the model in 

predicting the damage levels in RC moment-resisting frames [9]. Li et al. (2015) introduced 

an FAM-based formulation for the nonlinear analysis of concrete bridges. They examined 

the seismic performance of the bridges based on the fundamental concepts of the FAM. Two 

local biaxial plastic mechanisms (rotational and sliding hinges) were proposed to simulate 

the nonlinear flexure-shear interaction in the bridge piers. The formulation was compared 

with experimental results, and the biaxial plastic mechanisms provided satisfactory accuracy 

[10]. Safaei et al. (2019) compared the performance and efficiency of the FAM in nonlinear 

static (pushover) analysis with other common finite element methods in SAP. They also 

investigated the effects of elastic axial deformations on the structural performance by 

modifying the stiffness matrices of the members. The study evaluated six 2D steel frames 

using various methods, with the FAM proving efficient in seismic performance analysis 

[11]. Bahar and Bahar (2018) used the FAM to examine various static condensation methods 

in nonlinear structural analysis. In their study, they incorporated Rayleigh damping into the 

static condensation formulation. The results indicated that the FAM provided comparable 

performance to other finite element methods [12]. Kaveh and Zaerreza (2022) investigated 

the optimal design of framed structures. They used the force method to reduce the time 

required for optimization. Their study compared the performance and speed of the force 

method against the displacement method in the optimal design of frame structures using an 

improved PSO algorithm. The results showed that both analytical methods had similar 

accuracy, but the force method was faster and required less computational time [13]. In 

2023, Kaveh and Rezazadeh Ardabili examined the optimization of multi-story concrete 

structures using an Improved Plasma Generation Optimization (IPGO) algorithm. Their 

study evaluated the effectiveness of the proposed algorithm in the optimal design of three-

dimensional concrete frames under lateral seismic forces, in compliance with ASCE 7 

requirements. The results showed the proposed algorithm’s efficiency in optimizing concrete 

frames under seismic loading [14]. Kaveh and Shabani Rad (2023) used the force method 

for linear structural analysis in optimizing the weight of truss structures. Their study 

introduced an Improved Vibration Particle System (IVPS) algorithm as a new method for 

truss optimization. The results indicated that the proposed algorithm outperformed other 

available algorithms, and the use of the force method increased the optimization speed [15]. 

As can be seen, numerous studies have focused on improving the modeling of inelastic 

behavior in structures. However, considering the nonlinear behavior in the optimization 

design of structures involves substantial computational costs. This challenge has led to the 

limited investigation of inelastic behavior in space structures, due to the large number of 
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design variables and the complexity of nonlinear analysis. Therefore, the use of methods 

such as the Force Analogy Method (FAM) can provide an efficient tool for optimizing space 

structures while considering nonlinear material behavior. In this study, the weight 

optimization of space structures is considered, accounting for the nonlinear material 

behavior using the approximate FAM. Instead of calculating the stiffness in the inelastic 

region, the FAM considers displacement, followed by the calculation of force in the inelastic 

region, to perform nonlinear analysis. Consequently, the stiffness matrix is calculated only 

once in the nonlinear analysis for optimization, with the analysis of the structure considering 

the forces in the inelastic region. This study details the FAM formulation for the axial 

members of space structures and the impact of seismic forces on the structure. Finally, the 

validity of the method is tested by comparing the results of a 2D truss analysis based on the 

FAM with precise nonlinear analysis. The optimization process using the Shuffled Shepherd 

Optimization Algorithm (SSOA) for two space structures under seismic loading in the 

inelastic region is also performed. The optimization results indicate the effective 

performance of the proposed approach. 

 

 

2. FORCE ANALOGY METHOD FOR SPACE STRUCTURE  
 

2.1 FAM for Axial Loaded Members 

As previously mentioned, the Force Analogy Method (FAM) is based on the behavior of a 

structure in the elastic range and nonlinear displacements. Fig. 1 depicts this for a member 

under axial tensile load [10]. 

 

 
Figure 1: Force-Displacement diagram in the tensile region 

 

Accordingly, in an axially loaded member, the force corresponding to the total 

displacement x is expressed based on the stiffness of the member in the elastic range. 

 

s ef k x =  (1) 
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Where sf represents the force corresponding to the total displacement, considering the 

nonlinear behavior of the structure, ek  is the stiffness of the member in the elastic range, 

and x  is the elastic displacement. The inelastic or residual displacement ( x  ) can be 

calculated as the difference between the total displacement and the elastic displacement. 

 

x x x = −  (2) 

 

Using Eqs. (1) and (2), Eq. (3) can be derived. 

 

( )s ef k x x = −  (3) 

 

which shows the displacement of the member based on the force. Since the elastic 

displacement is not constant and changes with the applied force, 
sf , the FAM does not alter 

the stiffness but, by varying the displacement, it obtains the force corresponding to the 

structure’s nonlinear behavior [16]. 

On the other hand, for space structures with axial members, the FAM requires that the 

initial stiffness be the same in both tension and compression. This paper utilizes a physical 

theory-based model as the base for developing a modified version of the FAM [17]. Thus, 

Eq. (3) can also be considered valid for compressive axial loads, based on the equality of 

stiffness in tension and compression. However, it's important to note that, under compressive 

loading, there is a possibility of buckling before yielding for certain members of the space 

structure. Therefore, in the FAM for the compressive state, the buckling behavior of 

members must also be considered. In this context, Fig. 2 shows the behavior model of an 

axially loaded member under compressive forces, with a potential for buckling [8]. 

 

 
Figure 2: Force-Displacement diagram in the compressive region for buckling 

 

As shown in Fig. 2, the member's behavior under compression is assumed to have the 

same stiffness as in the tensile region until buckling occurs. Here, fb represents the buckling 

force, and xb the corresponding displacement, which is regarded as the total displacement, x. 
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If the elastic line is extended to the buckling force, fb, the corresponding elastic displacement 

xb will be obtained, which is known as the total displacement x. Using a similar process as 

for tensile loading, the inelastic compressive displacement due to buckling can be expressed 

as: 

 

bx x x = −  (4) 

 

where x   denotes the plastic displacement of the member, as with compressive and 

tensile loads. Likewise, the force-displacement correlation in the presence of possible 

buckling can be written as: 

 

( )b ef k x x = −  (5) 

 

Thus, the force-displacement equation under buckling is similar to the force-displacement 

equations under tension and compression. In the FAM, 0x  =  as long as the axially 

loaded member is elastic, while it is obtained based on the force when the member 

undergoes a plastic deformation or buckling. The general plastic displacement can be written 

as [16]: 

 

( )( )1 yx x x = − −  (6) 

 

where α is the axial stiffness-hardening factor, while yx  is the displacement 

corresponding to the yielding force yf . It should be noted that the compressive yielding 

stress and tensile yielding stress were assumed to be the same. In general, for axially loaded 

members under compression or tension in the FAM, the force and displacement can be 

correlated based on Eqs. (3), (5), and (6). 

 

( )e y yf k x x f= − +  (7) 

 

2.2 State-Space Nonlinear Dynamic Response for the FAM  

As explained in the previous section, the core concept of the FAM is that displacement 

changes, rather than stiffness changes, define the force. Therefore, the total displacement of 

the structure can be considered as the sum of the elastic and plastic displacements. As such, 

Eqs. (2) and (4) can be expressed in vector form for a multi-degree-of-freedom system, such 

as space structures [5]. 
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where n denotes the number of DOFs. The insertion of Eq. (8) into the dynamic 

equilibrium equation gives [7]. 

 

( ) ( ) ( ) ( ) ( )MX t CX t KX t Mg t KX t+ + = − +  (9) 

 

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, and ( )g t  

reflects the earth’s motion. To express Eq. (9) in a state-space form, the state vector is 

defined as: 

 

( )
( )

( )

X t
Z t

X t

  
=  
  

 (10) 

 

The differential equation governing the state space can be written as [16]: 

 

( ) ( ) ( )Z t AZ t H GX t= + +
 

(11) 

 

where A is the state transition matrix, H is earth’s motion matrix, and G denotes the 

plastic deformation transition matrix, which is defined as: 

 

( )1 1 1

00 0
,

I
A H and G

g tM K M C M K− − −

    
= = =    −− −    

 (12) 

 

Here, Z(t) is obtained by solving Eq. (11). 

 

( ) ( ) ( ) ( )0

0

( )

0

t
A t t At Aq

t
Z t e Z t e e Ha q GX q dq

− − = + +    
(13) 

where a(q) is the delta force function to define the ground acceleration based on the time 

variable q between time steps ti and ti+1. The value of Z(t) in given time steps is found by 

solving the integral part in Eq. (13). As a result, the displacement in the given time interval 

and, thus, the absolute acceleration vector are obtained [16]. 
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2.3 Formulation of the Optimization Problem  

The primary goal of optimization problems in structural design is to minimize weight 

while adhering to constraints. For skeletal structures like space frames, part of the weight is 

calculated based on the cross-sectional area of the structural members. Therefore, the cross-

sectional area of members can be treated as the design variable in the weight optimization 

process. In optimization, constraints are crucial and vary depending on the type of structure 

and optimization problem. For skeletal structures, constraints such as stress limits in the 

members are typically considered. In this paper, the weight optimization of space structures 

under seismic loads using FAM-based nonlinear analysis is considered, with the cross-

sectional areas as design variables and the member stresses as constraints. The optimization 

problem is formulated as follows [18]. 

 

1

1,2, ,i all

ne
s L

i i i
i

Minimize W =

Subject  to i ne



 


=

 =

 (14) 

 

Where W is the weight of the structure to be minimized, ne is the number of members, 

and i , Li , si and σi denote the density, length, cross-sectional area, and stress of member i, 

respectively, and σall is the allowable stress. To evaluate design (structure) j in the search 

space, the constraint violation of design j is obtained as [19]. 

 

1

max 1 ,0
ne

i
j

i all

c


=

   
= −    

    
  (15) 

 

where Cj is the constraint violation of structure j. Once the constraint violations of 

designs have been measured, the fitness function of design j is calculated as. 

 

( )1j j jW C = +  (16) 

 

where ϕj is the fitness function of design j across the search space. A design with a larger 

constraint violation score has a larger ϕ-value and lower fitness. Finally, the optimization 

problem is formulated for the optimal weight design of space structures [20]. This study 

used the SSOA to optimize the space structures. 

 

 

2.4 Shuffled Shepherd Optimization Algorithm (SSOA) 

SSOA is a meta-heuristic optimization algorithm introduced by Kaveh and Zaerreza 

(2020), inspired by the herding behavior of shepherds in the nature [21-22]. In this 

algorithm, solutions are represented as sheep, and the movement of each sheep guided by the 

shepherd and the horse searches the design space. The population of sheep is randomly 

initialized, and their fitness is evaluated based on the objective function. The sheep are then 
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ordered according to their fitness and shuffled into nh communities. The first nh sheepare 

randomly distributed into communities. Once the first sheeph as been assigned to the first 

community, nh sheep of the remaining population are chosen, reassigning the sheep to 

communities. This process continues until all sheep are assigned to nh communities. Upon 

completion of shuffling, all communities have the same number of sheep, with the best and 

worst within each community being the first and last members, respectively. The movement 

vectors for each sheep are calculated. Naturally, a shepherded attempts to direct sheep 

towards the horse. Therefore, the design corresponding to the top sheep chosen to move is 

known as Shepherd (Ri,j). In each community, two designs (sheep) with higher and lower 

fitness than the shepherd are randomly chosen. The designs that are better and worse than 

the sphered are denoted as the horse (Ri,h) and the shepherd (Ri,s). To continue directing the 

sheep toward the horse, the shepherd moves toward the sheep and then toward the horse. 

Therefore, the movement step of the chosen sheep/shepherd follows Eq. (17) as follows. 

 

( ) ( ), 2 , , 1 , ,

1,2,..., 1,2,..., /

i j i s i j i h i jStepsize rand R R rand R R

i nh j ns nh

 =  − +  −

= =
 (17) 

 

where nh and ns are the number of communities and the number of sheep, respectively, 

while rand1 and rand2 are two vectors whose entries are either 0 or 1. These entries are 

randomly generated between 0 and 1. The control parameters α and β are calculated as: 

 

0
0

max
iteration

iteration


 = −   (18) 

max min
min

max
iteration

iteration

 
 

−
= + 

 
(19) 

 

where iteration and maxiteration denote the current iteration and the maximum number 

of iterations, respectively. Furthermore, α0, βmax and βmin are set by the user. Evidently, a rise 

in the number of iterations linearly reduces α to zero, while β linearly rises as the number of 

iterations increases from βmin to βmax. Once the movement step has been calculated for all the 

sheep in all communities, the new position of each sheep is updated as Eq. (20) 

 

, , , 1,2,..., 1,2,..., /new old

i j i j i jR R Stepsize i nh j ns nh= + = =  (20) 

 

Then, ,

old

i jR  is replaced with ,

new

i jR , and sheep with higher fitness replace the previous 

sheep. This process is performed for all sheep of all communities. Then, new communities 

are combined, the sheep are rearranged based on their fitness in descending order, and one 

iteration is completed. A new iteration begins with re-shuffling sheep. The iterations 

continue until the discontinuance criterion (the maximum number of iterations) has been 

met, and the best sheep is introduced as the optimal design. 
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3. NUMERICAL EXAMPLES 
 

3.1 Example 1: 2D Truss 

In the first example, FAM was used to analyze a 2D truss structure with 12 nodes and 25 

members and the results obtained from FAM were compared with the exact method using 

Opensees, as shown in Fig. 3. 
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Figure 3: Schematic of the 2D truss  

 

The modulus of elasticity and the density of the materials were 2.01×106 kg/cm² and 7850 

kg/m³, respectively. The cross-sectional area of members 1 to 12 was 45.9 cm², of members 

13 to 17 was 28.5 cm², and the remaining members had a cross-sectional area of 39.1 cm². 

The structure was subjected to a nonlinear analysis under the Kobe earthquake records, as 

shown in Fig. 4. 

 

 
Figure 4: Acceleration records of the Kobe earthquake  

 

For validation of the FAM results, the displacement of node 10 was analyzed. As seen in 

Fig. 5, the displacement estimated using the FAM is in good agreement with the exact 

method. Therefore, it can be concluded that the FAM is an accurate method for nonlinear 
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analysis. It should be noted that the small discrepancy in the displacement of node 10, 

shown in Fig. 5, is due to the simplifications made in the Ref. [17] model used in the FAM 

method. 

 

 
Figure 5: Displacement of node 10 under Kobe earthquake  

 

3.2 Example 2: Double-Layer Barrel Vault with 792 Members 

Fig. 6 shows a double-layer barrel vault with 219 nodes and 792 members investigated 

based on the FAM with nonlinearity and optimization incorporated. The modulus of 

elasticity and the density of each element were 2.01×106 kg/cm² and 7850 kg/m³, 

respectively. The length, width, and height of the structure were 35 m, 30 m, and 3 m, 

respectively. 

 

Figure 6: 3D Schematic and plan of the double-layer barrel vault  

 

The structure was subjected to the Kobe earthquake records, as shown in Fig. 4. The 

members of the barrel vault were divided into 12 groups. As shown in Fig. 7, the members 

of the upper, lower, and middle layers were classified into four groups. 
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Group 1 of the upper layer 

(G 1) 

Group 2 of the upper layer 

(G 2) 

Group 3 of the upper layer 

(G 3) 

Group 4 of the upper layer 

(G 4) 

    

    
Group 1 of the middle layer 

(G 5) 
Group 2 of the middle layer 

(G 6) 
Group 3 of the middle layer 

(G 7) 
Group 4 of the middle layer 

(G 8) 
    

    
Group 1 of the lower layer 

(G 9) 
Group 2 of the lower layer 

(G 10) 
Group 3 of the lower layer 

(G 11) 
Group 4 of the lower layer 

(G 12) 
Figure 7: Grouping of barrel vault members  

 

Table 1 provides a list of the cross-sectional types available for the optimization process 

of the structure's weight, which includes 16 hollow tubular sections. In this table, D 

represents the outer diameter of the tube in millimeters, and t is the wall thickness of the 

tube in millimeters. 
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Table 1: List of tubular sections 

No D (mm) t (mm) No D (mm) t (mm) No D (mm) t (mm) No D (mm) t (mm) 

1 48.3 2.6 5 101.8 3.6 9 139.7 4 13 219.1 4.5 

2 60.3 2.9 6 108 3.6 10 159 4.5 14 244.5 6.3 

3 76.1 2.9 7 114.3 3.6 11 168.3 4.5 15 273 5 

4 88.9 3.2 8 133 4 12 193.7 4.5 16 329.9 5 

 

The optimization of the structure's weight was performed using the SSOA algorithm, 

with the nonlinear analysis based on the FAM. In order to compare the performance of the 

FAM, the optimization process was also carried out using the exact nonlinear analysis 

method in Opensees. That is, the optimization process for the 792-member barrel vault was 

carried out twice: once using the FAM and once using the Opensees’s exact method. The 

results of both methods, in terms of convergence during the optimization process, are 

compared in Fig. 8. 

 

 
Figure 8: Convergence of the optimization process using FAM and exact methods for the barrel 

vault 

 

As seen in Fig. 8, the optimization procedure using the exact method converged to a 

weight of nearly 17 tons, while the optimization using the FAM reached a weight of 

approximately 19 tons. Thus, the FAM-based optimization is considered a reasonable 

approximation of the exact method. Additionally, the optimization process using the FAM 

was significantly faster, taking about half the time of the exact method in Opensees. 

 

3.3 Example 3: Double-Layer Grid with 200 Members 

A double-layer grid with 200 members, with dimensions of 25×25 meters and a height of 

2 meters, was evaluated using the FAM and SSOA for inelastic behavior and optimization, 
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as shown in Fig. 9. This structure has 61 nodes, with nodes 7, 11, 51, and 55 supported at 

their base. 

 

 
Figure 9: Schematic of the double-layer grid with 200 members  

 

The members of the double-layer grid were classified into three groups: Group I 

consisted of the bottom members, Group II contained the top members, and Group III 

included all members in the layers between the upper and lower layers. The cross-sectional 

types for the optimization process are listed in Table 1. The modulus of elasticity and 

density of the members were 2.01×106 kg/cm² and 7850 kg/m³, respectively. The grid 

structure was also subjected to the Kobe earthquake records, as shown in Fig. 4. The 

convergence behavior of the optimization process for both the FAM and exact methods is 

shown in Fig. 10. 

 

 
Figure 10: Convergence of the optimization process using FAM and exact methods for the 

double-layer grid 
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As seen in Fig. 10, the exact method showed a more regular convergence pattern 

compared to the FAM. However, both methods converged to nearly the same optimal 

solution, with the FAM estimating an optimal weight of around 12 tons and the exact 

method yielding a result of about 11 tons. Furthermore, the optimization process using the 

FAM was significantly faster, requiring only 60% of the time taken by the exact method. 

Therefore, the FAM greatly accelerated the optimization process. 

 

 

4. CONCLUSION 
 

This study aimed to apply the Force Analogy Method (FAM) as an approximate technique 

for optimizing space structures in the inelastic region. Given the large search space and the 

time-consuming nature of nonlinear analysis, the FAM can significantly reduce computation 

time and speed up the optimization process. It accurately simulates the nonlinear behavior of 

space structures and produces reliable results while reducing the computational effort 

compared to traditional nonlinear analysis methods. In FAM, only the initial stiffness matrix 

of the structure is calculated once, and the state transition matrix remains unchanged 

throughout the analysis. This reduces computational time significantly, especially for large 

structures such as space structures. Therefore, the FAM proves to be an efficient tool for 

nonlinear analysis and optimization in large-scale structures. This study described the FAM 

method for structures with axial members, such as space structures, subjected to seismic 

forces. After validating the FAM's performance, it was used to optimize the weight of two 

space structures with 200 and 729 members using the SSOA algorithm. The results showed 

that the FAM reduces computation time significantly while providing optimization results 

that closely match the exact method. Thus, approximate methods like the FAM are highly 

recommended for optimizing large-scale space structures.  
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