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ABSTRACT 
 

Tuned mass damper (TMD) have been studied and installed in structures extensively to 

protect the structures against lateral loads. Multiple tuned mass dampers (MTMDs) which 

include a number of TMDs with different parameters have been proposed for improving the 

performance of single TMDs. When the structural system is considered as multiple degrees 

of freedom (MDOF) and implemented with MTMDs, there is no effective closed-form 

solution to determine the optimal parameters of MTMDs. On the other hand designing 

optimal MTMDs include a large number of variables. For optimal design of MTMDs, in this 

research an effective method has been proposed in which the parameters of TMDs are 

determined based on minimizing the Hankel’s norm of structure. Since the optimization 

procedure includes a large number of variables, hence it has been decided to use Genetic 

Algorithms (GAs) for determining the variables. For numerical simulation, the method has 

been utilized on an eight-storey shear frame modeled as MDOF, and optimal MTMDs have 

been designed. The results show that using the Hankel’s norm of structure as objective 

function has led to design effective MTMDs which could be effective in reducing the 

response of structure, especially the average value, under different far-field and near-field 

earthquakes. Also it has been found that the method is effective regarding its simplicity and 

convergence in solving complex optimization problem. Through extensive numerical 

analysis the effect of MTMDs mass ratio and TMDs number in MTMDs has been studied.  
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1. INTRODUCTION 
 

To protect structures under earthquake loads, different structural control mechanisms in 

passive control areas have been proposed. Application of tuned mass damper (TMD) as a 

kind of passive control systems on linear and nonlinear structures subjected to wind and 

earthquake excitations has received much attention during past years [1]. Based on the aim 

of using TMDs different methods have been developed for determining the optimum values 

of TMD parameters(mass, stiffness and damping) on linear structures such as minimizing 

the root-mean-square (RMS) of the main structure displacement or acceleration under white 

noise excitation [2], maximizing the effective damping of the structure [3] and minimizing 

the difference between the damping of the first two modes of the structure-TMD system 

[4].Mainly, when using a single TMD, it is located on the top of the structure and tuned to 

the fundamental frequency of the structure. While single TMD could be effective in 

reducing the response of structure under external excitations, especially for wind-induced 

vibrations, but they suffer from some drawbacks such as sensitivity problem to detuning the 

TMD frequency, TMD damping ratio and uncertainty in dynamic properties of main 

structure. The mistuning of TMD, variation of TMD damping and changes in structural 

dynamic characteristics cause significant reduction in the effectiveness of TMD. Also in 

practical application of TMD on tall buildings it may require a heavy mass consequently a 

considerable space for its installation. For high-rise buildings which the higher modes may 

play a considerable role on total response, designing a single TMD tuned to the first mode 

of vibration may has a little effect on controlling the response of higher modes. 

To overcome these shortcomings application of multiple tuned mass dampers (MTMDs) 

has been proposed to be used instead of a single TMD [5].They concluded that the use of 

MTMDs with distributed natural frequencies over a small range of a single degree of 

freedom (SDOF) natural frequency, could be more effective than a single TMD with the 

same total mass. It has been shown that the sensitivity of MTMDs to uncertainty of 

structural dynamic parameters is less than a single TMD [6-8]. Multiple tuned mass 

dampers can be used in parallel or series configurations as well as located at one floor or 

distributed over the floors of a building structural system. Kareem and Klein [9] investigated 

the characteristics and effectiveness of MTMDs with distributed nature frequencies under 

both wind and earthquake excitations. It was concluded that the performance of MTMDs is 

dependent on the total number of dampers, damping ratio, frequency range selected for 

designing optimal MTMDs and the distribution of TMDs on the floors. 

In the previous researches for designing MTMDs different approaches have been used. In 

the early stages of designing MTMDs to simplify the analysis and design procedure, some 

design constraints such as identical masses and damping ratios have been considered for 

TMDs [5]. Following these constraints Yamaguchi and Harnpornchai [10] studied the effect 

of different parameters of MTMDs on SDOF structure under harmonic excitations. Igusa 

and Xu [11] to generalize the optimal design problem by relaxing the design constraints on 

the mass and damping ratio of TMDs and using an asymptotic analysis, designed MTMDs 

for a SDOF structure subjected to a wide-band force. Jangid [12] proposed a method for 

determining the optimum parameters of MTMDs for an undamped system subjected to 

harmonic excitation. The method has been based on minimizing the steady-state 
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displacement of the main system by using a numerical searching technique. In design 

procedure proposed by Wu and Chen [13], an MTMDs system is divided to several groups, 

each corresponding to one floor and consisting of several dampers distributed on different 

floors. By developing a sequential procedure, MTMDs were placed optimally to minimize 

the acceleration of structure. Chen [14] studied the designing multiple TMDs on MDOF 

structures subjected to seismic loads where the MTMDs have been designed based on 

tuning to several modes of structure vibration where in the proposed method the number of 

dampers is determined based on the number of modes considered to be controlled. Li[15] 

studied the performance of five configurations of MTMDs which include different 

combinations of TMD parameters (mass, stiffness and damping) while the optimality 

criterion  has been as the minimization of the displacement dynamic magnification 

factor(DDMF) and the acceleration dynamic magnification factor(ADMF) of a structure 

subjected to ground acceleration. Hoang and Warnitchai[16] proposed a method for 

designing multiple TMDs to minimize excessive vibration of MDOF linear structures by 

using a numerical optimizer. The method considers a gradient based nonlinear programming 

algorithm to find the optimal parameters of TMDs where the target response has been 

defined as a quadratic performance index. It has been shown that the proposed method is 

effective in determining a large number of TMDs parameters without imposing constraints 

before analysis. Distribution of TMDs vertically and in plan has been studied too [17-18]. 

Moon [18] investigated the effectiveness of vertically distributed MTMDs along the height 

of building. The vertically distributed MTMDs theory can be used for controlling not only 

the first mode but also the higher modes where the vertically distributed TMD zones for 

each mode, is determined based on its mode shape. It has been found that vertically 

distributing of MTMDs leads to increasing the reliability of the control system ,saving the 

valuable space near the top of tall buildings which is required when using a single TMD 

located at the top of building, easy installation of small TMDs and possessing a high 

potential of practical application over the conventional TMD system. Mohebbi et al. [19] 

proposed  an effective method for designing optimal MTMDs on MDOF structures which 

Genetic Algorithm has been used for solving the optimization problem. In the previous 

researches different approaches have been selected as objective in designing optimal 

MTMDs where in most researches minimizing the maximum displacement or acceleration 

of structure has been the main objective of using MTMDs. While these methods are very 

effective regarding the safety and conformability of occupants criteria, but the result of 

numerical simulations show that using this kind of objective functions for designing 

MTMDs generally leads to minimize the maximum value of an specified response while the 

reduction in maximum or average of other responses has not been more significant [19]. 

Hence to overcome these shortcomings, in this paper, minimizing the Hankel’s norm of 

structure has been considered as objective function in designing optimal MTMDs for linear 

MDOF structures subjected to earthquake excitation. The proposed method has been based 

on defining an optimization problem which considers the parameters of TMDs(including 

mass, stiffness and damping of an individual TMD) as design variables and minimizing the 

Hankel’s norm of structure as objective function. By solving the optimization problem, the 

optimal values of TMDs parameters are determined. The optimization problem, defined for 

determining TMDs parameters, includes a large number of variables hence; solving it by 
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using the traditional optimization methods will be cumbersome and needs an extensive 

numerical computations. On the other hand Genetic Algorithm (GA) has been extensively 

used for solving optimization problem in most fields of engineering [20] such as designing 

TMD for linear and nonlinear structures [21-23]. Therefore; it has been decided to use 

Distributed Genetic Algorithm (DGA) [24-25] which is an improved version of simple GA, 

for designing optimal MTMDs.  

In the following sections first the equation of motion of structure-MTMDs will be 

presented in state-space form, next a brief explanation of Hankel’s norm and DGA will be 

followed by a numerical example and conclusions. 

 

 

2. STRUCTURE-MTMDS MOTION EQUATION  
 

The equation of motion of a linear n-degree of freedom shear building structure subjected to 

an earthquake ground motion, )t(x g
 , the external force, F, and equipped with N TMDs as 

shown generally in Figure 1, has the form: 

 

         FteMXKXDXM  gx][ 

 

(1) 

 

where [M], [D] and [K] are, respectively, the (n+N)×(n+N) mass, damping and stiffness 

matrices, X is the vector of displacements relative to the fixed base , e
T
=[-1 -1……-

1](1×(n+N)) ground acceleration-mass transformation vector and F is the vector of external 

force.  

When one or several TMDs are installed on the structure, the mass, stiffness and 

damping matrices in equation (1) should be developed regarding the configuration and 

distribution of TMDs. For example, for a four-storey shear frame equipped with four TMDs 

at top floor of structure as shown generally in Figure 1, the mass and stiffness matrices are 

as follows: 
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Figure 1. Multiple tuned mass dampers (MTMDs) attached to the structure [19] 

 

The equations of motion, equation (1), can be represented in state-space form as follows 

[21]: 
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in which A, B, C=system matrixes where based on the type of output vector, y, the system 

matrix,C, is developed properly, I=identity matrix, )t(xg
 =ground acceleration and 0=matrix 

containing zero.  

In this paper by considering only earthquake loading the equation of motion defined in 

equation (4) can be written as: 

 

 EwAZZ 

 

(8) 

 

 

3. HANKEL’S NORM 
 

Controllability and observability are structural properties that carry useful information for 

structural testing and control. A structure is controllable if the installed actuators excite all 

its structural modes; also observability is defined as the capability of installed sensors to 

detect the motions of all the modes. This information, although essential in many 

applications, is too limited. It answers the question of mode excitation or detection in terms 

of yes or no. The more quantitative answer is supplied by the controllability and 

observability grammians, which represent a degree of controllability and observability of 

each mode [26].  

A proper approach to check the controllability and observability of a system is by using 

grammians. Grammians are nonnegative matrices that express the controllability and 

observability properties qualitatively, and are free of the numerical difficulties of the other 

criteria. The controllability and observability grammians are defined as follows: 

 

   d)Aexp(BB)Aexp()t(W T
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(9) 
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The grammians can be determined alternatively and more conveniently from the 

following differential equations: 
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The solutions wc(t) and wo(t) and are time-varying matrices. For a stable system, the 

stationary solutions of the above equations can be obtained by assuming wc= wo=0 where 

the differential equations are replaced with the algebraic following equations, called 

Lyapunov equations: 
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 0BBAWAW TT

cc   (13) 

 

 0CCAWWA T

oo

T   (14) 

 

where for stable A, the obtained grammians Wc and Wo are positive definite. 
The eigenvalues of the grammians are changed during the coordinate transformation. 

However, the eigenvalues of the grammian product are invariant where these invariants are 

denoted i  and can be obtained as follows: 

 

 )( ocii WW      i=1, 2, ..., N (15) 

 

where N=number of system states and i s are called the Hankel’s singular values of the 

system. The Hankel’s norm of the system is defined as the largest Hankel singular value of 

the system, max . 

 

 
h

G max  (16) 

 

Then, the Hankel’s norm of the system is the largest norm of its mode and a measure of 

the effect of the past input on the future output, or the amount of energy stored in and 

subsequently retrieved from the system. This study will integrate controllability-

observability based measures, system Hankel’s singular norms, into the problem of 

designing optimal MTMDs. The Hankel’s norm is advantageous because it reflects both 

controllability and observability, and is invariant under linear similarity transformations. 

 

 

4. OPTIMAL DESIGN OF MTMDS FOR MINIMIZING HANKEL’S NORM 
 

In this paper for optimal design of MTMDs, an optimization problem has been defined 

which considers the minimization of Hankel’s norm of the structure as the objective 

function and the parameters of TMDs(including mass, stiffness and damping of each TMD) 

as variables to be determined while a number of constraints are considered on TMDs 

response or TMDs parameters. Hence, the optimal values of TMDs parameters are 

determined by solving the following optimization problem: 

 

Find          Ti= (mdi,cdi,kdi)      i=1,2,…,N (17a) 

Minimize               
h

G =Hankel’s norm     (17b) 

 

where Ti  represents the vector of the TMDs parameters mdi, cdi and kdi which are the mass, 

damping and stiffness of the i
th 

TMD and N=the number of TMDs also some constraints are 

considered in optimization problem. 
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5. DISTRIBUTED GENETIC ALGORITHM (DGA) 
 

Genetic algorithm (GA) developed by Holland[27], is a strong computational method which 

is inspired by natural Darwinian evolution .In GAs the design vector is considered as 

chromosome or individual and the variables of design vector as genes .The chromosomes 

evolve under a certain environment and are represented by bit strings or real-valued coding. 

In the early stages of string coding design variables were represented in their binary format 

[20, 28]. It has been shown in using the real- valued coding representations for representing 

the chromosomes while the optimization problem includes continuous variables, there is no 

need to convert chromosomes also there is greeter freedom to use different operators of 

GA[29-30] hence, in this research it has been decided to use the real-value coding to 

represent the variables which are continuous. 

There are three genetic algorithm operators including selection, crossover and mutation. 

In every generation, a set of chromosomes is selected for mating based on their relative 

fitness. The fitters are given more chance of passing their genes into the next generation. 

This process of natural selection is operated by selection. In this paper the stochastic 

universal sampling method [31] has been used for selecting a number of chromosomes for 

mating, based on their fitness values in the current population as: 

 

  
 

 
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indN

1i
i

i
i

F

F
 P

x

x
x     , i=1,2,...,  Nind (18) 

 

where F(xi)=fitness of chromosome xi and P(xi)=probability of selection of xi also Nind 

=number of individuals.  

The selected individuals are then chosen randomly through crossover to produce 

newborns. Crossover produces new individuals that have some parts of both parents genetic 

material. In this paper the method proposed by Mühlenbein and Schlierkamp-Voosen[32] 

for crossover has been used, where each pair of parents can produce two newborns and each 

newborn can get its genes from either parent with equal probability as follows: 

 

 O=P1+α(P2-P1) (19) 

 

where P1 and P2 are the parent chromosomes genes, O is the newborn gene, and α is a 

scaling factor chosen randomly over [-0.25, 1.25] interval typically .This method uses a new 

α for each pair of parents genes. 

The role of mutation operator is to help the GA to escape from local minima and to 

provide a guarantee that the probability of searching any given string will never be zero. 

In this paper the elitist strategy has been used where Nelites of the best chromosomes are 

selected as elites of the current generation to go to the next generation without modification. 

The rest of the chromosomes in the population are replaced by inserted newborns (Nins). 

hence: 

 

 Nelites =Nind - Nins (20) 
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When there is a large number of variables in an optimization problem such as 

optimization problem defined in this study for designing optimal MTMDs with a large 

number of TMDs, using the simple GA may require large number of generation to obtain 

the optimal answer of optimization problem. For solving this kind of problem it has been 

proposed to use an improved version of simple GA which called Distributed Genetic 

Algorithms (DGA)[24-25]. To obtain quicker convergence in optimization process, in DGA 

a large population is divided into smaller subpopulations, and a simple GA is executed on 

each subpopulation separately. 

 

 

6. NUMERICAL EXAMPLE 
 

In this paper to examine the usefulness of MTMDs in improving the performance of 

structures under earthquake excitation as well as to evaluate the usefulness of the proposed 

method in designing the optimal MTMDs, an eight-storey shear frame with uniform 

properties for all stories has been modeled assuming linear material behavior for structure 

and TMDs. The properties of each story are as follows: elastic stiffness k= 3.404×10
5
 kN/m, 

floor mass is 345.6 tons and the natural frequency of the structure is = 0.92 Hz. The linear 

viscous damping coefficient c is 2937 t/sec. The structure has been analyzed by considering 

MTMDs in parallel configuration located at the top of structure. By assuming a specified 

value for the total mass ratio, μ, and the numbers of TMDs, N, following the proposed 

method the optimal values of mass, stiffness and damping of TMDs have been determined 

based on minimizing the Hankel’s norm of structure. 

 

6.1. Designing Optimal MTMDs for N =10 and μ= 4%  

To illustrate the proposed method for designing the optimal MTMDs, ten TMDs have been 

considered where the total mass of TMDs has been 110.6 tons which corresponds to μ= 4%. 

The optimization problem to determine the mass, stiffness and damping of each TMD, has 

been defined as follows: 

 

Find          Ti= (mdi,cdi,kdi)      i=1,2,…,N (21a) 

Minimize      
h

G =Hankel’s norm (21b) 

Subject to:  

 
Lmax XTMDsX   (21c) 

6110m

di

10i

1i

.=∑
=

=

     tons (21d) 

0<cdi<cd max, 0<kdi<kd max (21e) 

where  )(max)(max iTMDXTMDsX       i=1, 2,…, 10 (21f) 

XL = the maximum stroke length of TMDs, cd max and kd max = the maximum possible 
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stiffness and damping of TMDs which should be considered by the designer. 

By assuming XL= 50 cm and kdmax=1×10
4
 kN/m and cdmax=1000 t/sec, Distributed Genetic 

Algorithm (DGA) has been used for solving the optimization problem defined in 

equations(21a-f). To this end, first the optimization problem has been changed to an 

unconstraint problem by considering the constraints as penalty function; next DGA has been 

used for solving an unconstraint problem. In this paper to simplify the procedure of 

designing optimal MTMDs, uniform distribution for TMDs mass has been considered. 

Hence, in this case the optimization problem has 20 variables which should be determined. 

For solving the optimization problem, the following parameters have been considered for 

DGA: 

Number of subpopulations=5, Number of individuals in each subpopulation=10, Number 

of elites in each generation =2, Number of the newborns in each generation=10, Mutation 

rate=0.05, Migration interval=10 and Migration rate=0.20. 
    For solving the optimization problem defined in equations(21a-f) by using DGA, five 

subpopulations each with 10 randomly generated vectors(chromosomes) of MTMDs parameters 

(Ti(mdi, cdi, kdi), i=1,2,…,10) were generated as the initial population which each chromosome 

includes 20 variables(genes). For the generated values of MTMDs parameters, the Hankel’s 

norm of the structure and the maximum displacement of TMDs were recorded. Iteratively, the 

subpopulations were modified according to the DGA so that new generations were generated 

until convergence was achieved. By monitoring the Hankel’s norm value of the structure for all 

MTMDs parameters in every generation, the fittest individual of that generation was identified. 

To guarantee the accuracy of optimization procedure, different runs have been done in DGA for 

N=10. Figure 2 shows the convergence behavior of DGA, including the variation of the best 

fitness during generations of DGA, for four runs. Results show that different runs have ended 

with the same optimum answer but with different convergence speed. Noticing the results, it can 

be concluded that the proposed method has been effective in designing optimal MTMDs 

regarding the simplicity and convergence behavior. To compare the convergence behavior of 

DGA with simple GA, the optimization problem has been solved again by using simple GA and 

the convergence of procedure toward optimum answer for 500 generation has been shown in 

Figure 3 for DGA and GA. Results show that by using DGA the optimum answer has been 

achieved after 250 generations while in simple GA after 500 generations the final optimal 

answer has not obtained, yet. 
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Figure 2. Convergence behavior of DGA including variation of the best fitness for four runs 
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Figure 3. Comparing the convergence of DGA and simple GA 

 

6.2. Performance of optimal MTMDs under Different Earthquakes 

To assess the effectiveness of designed MTMDs for N =10 and μ= 4% in mitigating the 

response of structure under different real earthquakes which are different in peak ground 

acceleration and frequency content, the uncontrolled structure and controlled structure 

equipped with optimal MTMDs have been tested under El-Centro (1940, PGA=0.34g), and 

Hachinohe (1968, PGA=0.23g) records as far-field earthquakes as well as Northridge (1994, 

0.84g) and Kobe (1995, 0.83g) records as near-field earthquakes. The maximum 

displacements and acceleration of uncontrolled and controlled structures have been reported 

in Figures 4-7, also root-mean-square (RMS) of displacement and RMS of acceleration 

under El-centro and Northridge excitations, as samples, have been shown in Figures 8-9 

where the maximum root-mean-square (RMS) of displacement as well as acceleration of an 

n storey frame have been calculated according to equations (22(a,b)). 
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    v(i)RMSmaxvRMSmax           i=1,2,…,n                      (22b) 

 

where v(i) = displacement or acceleration of i
th

 storey and kmax is the total number of time 

steps. 

According to results it can be said that (1) by using MTMDs not only the maximum 

values of structure response but also the response of all stories has been decreased;(2) by 

using Hankel’s norm as objective it has been found that the maximum displacement and 

acceleration of structure have been reduced simultaneously while in the previous researches 

it has shown that when using the maximum displacement as objective function, the 

reduction in maximum acceleration has not been more noticeable [19], this conclusion is 

north worthy regarding the safety and comfort ability criteria in designing structural control 

system; (3)the effectiveness of MTMDs depends on the characteristics of earthquake where 

in this study the maximum reduction in response has been obtained when the structure 

subjected to El-Centro excitation; (4) the most reduction has been achieved in displacement 
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RMS for all earthquakes which this result is related to the objective function selected for 

designing MTMDs. 
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Figure 4. Uncontrolled and controlled structures maximum (a) displacement; and (b) 

acceleration generation for different stories under El-Centro excitation 
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Figure 5. Uncontrolled and controlled structures maximum (a) displacement; and (b) 

acceleration generation for different stories under Hachinohe excitation 
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Figure 6. Uncontrolled and controlled structures maximum (a) displacement; and (b) 

acceleration generation for different stories under Northridge excitation 
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Figure 7. Uncontrolled and controlled structures maximum (a) displacement; and (b) 

acceleration generation for different stories under Kobe excitation 

 

(a)

1

2

3

4

5

6

7

8

0 0.01 0.02 0.03 0.04 0.05

 Displacement RMS(m)

S
to

r
e
y

 N
u

m
b

e
r
 

Uncontrolled 

Controlled 

(b)

1

2

3

4

5

6

7

8

0.2 0.6 1 1.4 1.8

 Acceleration RMS(m/s
2
)

S
to

r
e
y

 N
u

m
b

e
r
 

Uncontrolled 

Controlled 

 
Figure 8. Uncontrolled and controlled structures (a) RMS of displacement; and (b) RMS of 

acceleration for different stories under El-Centro excitation 
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Figure 9. Uncontrolled and controlled structures (a) RMS of displacement; and (b) RMS of 

acceleration for different stories under Northridge excitation 

 

6.3. Effect of TMDs Number (N) on the Performance of MTMDs  

To assess the effect of TMDs number on the performance of multiple TMDs, following the 
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same procedure applied to Ntmd = 10, optimal MTMDs have been designed for Ntmd = 1,5 

and 20 by assuming μ= 4%. The uncontrolled and controlled structures have been subjected 

to real earthquakes and the maximum response of controlled structure has been divided to 

uncontrolled value and shown in Figures 10-11. Also Figure 12 shows time history of 

maximum displacement of uncontrolled and controlled structures for different TMDs 

number. Noticing the results it can be said that for a specified value of TMDs total mass, the 

performance of MTMDs is not sensitive to the number of TMDs. While increasing the 

number of TMDs has not affected the performance of MTMDs but offers a smaller size for 

an individual TMD which is more attractive regarding the ease of installation. Hence, for a 

specified total mass of TMDs, to obtain the smaller size for TMDs, the MTMDs system can 

be divided to large number of TMDs while the performance of MTMDs has been kept 

constant.  
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Figure 10. Normalized displacement of controlled structure under different excitations using 

different numbers of TMDs for μ=4% 
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Figure 11. Normalized acceleration of controlled structure under different excitations using 

different numbers of TMDs for μ=4% 
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Figure 12. Maximum displacement of uncontrolled and controlled structures subjected to 

El-Centro earthquake when using 5, 10 and 20 TMDs 

 

6.4. Designing Optimal MTMDs for Different Values of TMDs Total Mass 

To assess the effect of TMDs total mass on the effectiveness of MTMDs, also to determine 

the optimal value of TMDs total mass under a specified earthquake, different MTMDs for 

minimizing the Hankel’s norm of structure have been designed for different values of mass 

ratio. The maximum response of controlled frame when subjected to El-Centro excitation 

has been normalized to maximum uncontrolled response and shown for different values of 

total mass ratio, μ, in Figure 13. Based on the results, it has been concluded that the 

effectiveness of MTMDs depends on the value of total mass of TMDs where increasing the 

total mass has led to increasing the performance of MTMDs in reducing the response of 

structure. Also Figure 13 can be used as design guideline for determining the optimal value 

of TMDs total mass to mitigate the response of structure to a desired level. 
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Figure 13. Normalized response of controlled structure subjected to El-Centro earthquake versus 

TMDs total mass ratio when using 10 TMDs 
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7. CONCLUSION 
 

In this paper a method has been developed for designing optimal MTMDs to reduce the 

seismic response of multi degree of freedom (MDOF) shear frames. To determine the 

optimal parameters of tuned mass dampers (TMDs) including mass, stiffness and damping 

of each TMD, an optimization problem has been developed which minimizes the Hankel’s 

norm of structure while some constraints on TMDs parameters as well as TMDs stroke 

length have been considered. To illustrate the procedure of design and the effectiveness of 

selected objective function, the method has been used for designing optimal MTMDs for an 

eight-storey linear shear frame. Distributed Genetic Algorithms (DGAs) has been 

successfully applied for solving the optimization problem which results confirm the 

capability of DGA as a powerful algorithm for solving a large scale MTMDs design 

optimization problem. According to the results, it can be concluded that the proposed 

method for designing optimal MTMDs has been effective regarding its simplicity and 

convergence behavior. Testing optimal MTMDs under far-field and near-field earthquakes 

which are different in frequency content and peak ground acceleration (PGA), shows that 

(1) using minimizing Hankel’s norm as objective function has led to more reduction in RMS 

of displacement and acceleration, also the maximum acceleration and displacement have 

been reduced simultaneously which shows the effective performance of design criterion 

regarding safety and comfortability of occupants; (2) the performance of MTMDs in 

mitigating the response of structure depends on the earthquake characteristics, hence when 

designing an MTMDs system in a particular area, the design earthquake of that area with a 

proper PGA should be considered as external excitation. Assessment the effect of TMDs 

total mass on effectiveness of MTMDs shows that increasing the total mass of TMDs has 

led to increasing the performance of MTMDs in reducing the response of structure. Also it 

has been found that for a specified value of MTMDs mass, increasing the number of TMDs 

has not significantly affected the efficiency of MTMDs while it has led to obtaining the 

smaller size for TMDs which is attractive in practical application regarding ease installation 

and required space. 
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