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ABSTRACT 
 

This article introduces three simple ideas that lead to the efficient design of regular moment 

frames. The finite module concept assumes that the moment frame may be construed as 

being composed of predesigned, imaginary rectangular modules that fit into the bays of the 

structure. Plastic design analysis aims at minimizing the demand-capacity ratios of elements 

of ductile moment frames by inducing the strength and stiffnesses of groups of members in 

accordance with certain design criteria, rather than investigating their suitability against the 

same rules of compliance. Collapse modes and stability conditions are imposed rather than 

investigated. In short, theory of structures is applied rather than followed. Plastic 

displacement control suggests that in addition to conducting failure analysis, the maximum 

displacements of plausible failure modes at incipient collapse should also be taken into 

consideration. While two collapse mechanisms may share the same carrying capacity, their 

maximum displacements may be different. 
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1. INTRODUCTION 
 

The technical benefits of Plastic Design (PD) have been amply documented in the literature 
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as well as such authoritative texts as [1-4]. PD has been recognized by many jurisdictions, 

e.g. [5-7] as an effective means of member sizing for ductile structures in general and 

moment frames in particular. In recent years, there has been a revival of interest in plastic 

design in connection with earthquake resistant moment frames [8-11]. Pushover analysis, 

which is a byproduct of PD has been devised to compute the ultimate carrying capacities of 

ductile structures under lateral loading [12, 13]. It is a powerful means for understanding the 

nonlinear response of ductile systems due to sequential formations of plastic hinges. As an 

investigative design tool, it aims at assessing drift ratios at first yield, before plastic failure 

and or at incipient collapse. Pushover analysis does not aim at controlling the sequence of 

formation of the plastic hinges nor does it attempt to reduce material consumption. Plastic 

analysis is also the basis of the contemporary displacement-based seismic design of 

engineering structures [14-17]. PD has also been recognized as the most reliable means of 

design against progressive collapse [18-19]. 

Recently there has been a surge in novel optimization techniques that aim at improved 

cost and performance of engineering structures, e.g., [20-29]. Optimization techniques that 

aim at minimizing material weight, seek solutions that not only satisfy the design criteria, 

but also try to maximize the number of members with demand-capacity ratios as close to 

unity as possible. The simplest of these solutions are those that mimic structures of uniform 

response, [30-32], where the demand–capacity ratios of all members are either equal or 

close to unity. Theoretically speaking, all members of structures of uniform response fail 

simultaneously at ultimate loading. However, there is no reason why the processes involved 

in pushover and optimization techniques cannot be reversed by first selecting a preferred 

collapse mechanism, then working backwards to select members that would lead to an 

optimized outcome. 

The current article introduces Plastic Design Analysis (PDA) as a simple method of 

design for lateral resisting moment frames with a view towards displacement control and 

prevention of development of premature plastic hinges anywhere within the structure. PDA 

is in fact a design oriented interpretation of the classical PD methods of ductile structures. 

Most importantly, PDA tends to minimize the volume of computations needed to design an 

efficient moment frame under lateral loading. PDA is a practical design approach, and as 

such avoids generalities and unnecessary computations, but relies heavily on understanding 

the theoretical aspects of plastic response. In PDA theory of structures is applied rather than 

followed. For instance, realizing that displacements at first yield and at incipient collapse 

are of greater importance than their interim counterparts, the thrust of the effort is directed 

towards locating the points of formations of the first and last sets of plastic hinges developed 

within the structure. In PDA, failure patterns, member strengths, drift ratios and loss of 

stability are not checked again for code compliance. PDA is not a method of analysis. It is 

however, an analytic tool for producing structure specific designs. The reader is cautioned 

that, for the sake of clarity, the effects of offset hinging, strain hardening, yield over 

strength, local instabilities, as well as panel zone, axial and shear strains have been ignored 

throughout this presentation. The use of the proposed formulae is ideally suited to case 

specific and preliminary design purposes. Several parametric examples have been provided 

to illustrate the applications of the proposed solutions. 
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2. RATIONALE 
 

The algorithm, defining the use of imaginary modules as constitutive elements of moment 

frames, assumes that that the entire structure including the grade beams, is composed of 

imaginary, rectangular, rigidly connected modules that fit into the bays of the framework 

[33]. Consequently, if each minimum weight module is designed in accordance with the 

prescribed criteria, then the entire assembly could also be regarded as a minimum weight 

frame that complies with the same design rules. In other words, the design of one such 

module can be utilized to generate geometrically similar modules in order to reconstruct the 

prototype. It has been assumed, for the sake of simplicity, that these imaginary modules are 

first assembled next to each other to model an optimized horizontal sub-frame. Similar sub-

frames are then generated and stacked on top of each other to reconstruct the original 

structure. The rationale leading to the complete design of an optimized multilevel moment 

frame is presented in three distinct but related stages. The first stage describes the 

development of a computational template or basic module, such as that shown in Figure 

1(g). The second stage discusses the evolution and optimization of the horizontal sub-frames 

that constitute the completed structure. In the final stage the sub-frames are proportioned 

with respect to their racking moments and are mounted on top of each other to recreate the 

original framework. 

 

 
Figure 1. (a) Lateral loading, (b) Regular Moment frame, (c) Constitutive modules, (d) 

Preferred global sway mechanism, (e) Grade beam supported imaginary module, (f) Combined 

mechanism, (g) Typical imaginary module 

 

In this approach the basic modules are designed in relation with prescribed loading and 

target drift ratios. These modules are selected in such a way as to enforce the global collapse 

mechanisms of figures 1(d) or 1(f) without violating the prescribed drift limits at incipient 

collapse. The method leads to efficient initial designs rather than analyzing designs that may 

lead to acceptable preliminary solutions. The proposed methodology involves no complex 

mathematics or iterative processes. 

 

3. DEVELOPMENT OF BASIC MODULES 
 

The development of the basic module is carried out in two distinct but related steps. Stage 
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one examines the various collapse modes associated with combinations of constant gravity 

forces W and P and a monotonically increasing lateral load V. The first stage studies lead to 

the establishment of permissible load combination regions, such as the quadrangle “abco” of 

Figure 2. The knowledge that the weak beam-strong column principle precludes the 

formation of plastic hinges at column ends reduces the number of admissible failure 

mechanisms to those depicted in figures 2(b) through 2(f). It may be evident that if the 

module is to withstand relatively large lateral forces, its horizontal members should be 

strong enough not to fail prematurely as independent beam mechanisms. This hints to the 

possibility that the sway mode II may be associated with smaller lateral displacements than 

those corresponding to the combined beam-sway mechanisms III-1, III-2 and III-3. The 

exclusion of joint mechanisms at column ends immensely facilitates the discussions 

pertaining to these failure patterns as presented in the prospecting sections. Once the 

permissible load-interaction region is established, the failure mechanism associated with the 

largest side sway at incipient collapse can be identified as the more critical failure mode for 

final design purposes. The more critical failure mode undergoes larger displacements under 

relatively larger lateral forces. The critical design region is indicated by rectangle “cbdo” in 

Figure 2. Stage two studies involve the derivation of the lateral displacements of the critical 

failure patterns at incipient collapse. In practical terms, any design fitting within the 

permissible interaction region would be guarantied to fail through an imposed failure pattern 

without exceeding the prescribed drift ratios at first yield and at incipient collapse.  

 

 
Figure 2. (a) Generalized basic module, (b) Collapse modes I-1 and I-2, (c) Collapse mode II, 

(d) collapse mode III-1, (e) Collapse mode III-2, (f) Collapse mode III-3 

 

3.1. Step 1: Failure mechanisms  

The lateral displacements of a generalized basic module, such as that shown in Figure 2(a), 

at incipient collapse may be related to mode specific displacement ranges 11   and 

01    for sway and combined modes of failure respectively. The auxiliary range 

functions  and   can then be incorporated as part of the load-resistance interaction 

diagram to relate the maximum lateral displacements to the corresponding load combination 

at the onset of plastic collapse. Here, 
PM and

PN , and I and J stand for plastic moments of 
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resistance and moments of inertias of beams and columns respectively. Suffices u and l refer 

to upper and lower levels respectively. L and h represent the span and the height of the 

module respectively. P, W and V are independent, monotonically increasing gravity and 

lateral forces acting as shown on the module. The six independent load-resistance 

interaction equations together with their displacement range functions describing the plastic 

limit states of the generalized basic module of Figure 2(a), may be presented as; 
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where, KhPfcr /21  is the load magnifying factor due to racking P-delta effects, [34], 

and K is stiffness of the module at incipient failure. Appropriate values of K may be derived 

from the corresponding displacement equations presented in the next section. 

A graphical presentation of group of Eqs.1-6 including their auxiliary displacement 

ranges is provided in Figure 3. The forthcoming presentation is further simplified, without 

loss of generality, by introducing the loading ratio  =Ml
P
/Mu

P
=Wl/Wu and the auxiliary 

range functions α =MA/Mu
P
 and/or α =MA/Ml

P
, and, β =MB /Mu

P
 and or β =MB /Mu

P
 where 

suffices A, B, C, etc., refer to specific locations along the members of the module. It may be 

evident from group of Eqs.(1) and/or Figure 3 that for =1, Ml
P
=Mu

P
=M

P
, Wl=Wu=W. As a 

result modes I-1and I-2, and, modes III-1,III-2 and III-3 coincide, in which case points a, b 

and c coincide with coordinates W=2M
P
L/ab, W=M

P
L/ab and V=4M

P
L/ab respectively. 

Both α and β can be related to the static equilibrium conditions of the beams of the subject 

module at incipient collapse, i.e. 
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Figure 3. Load-displacement interaction diagram indicating permissible and desirable regions 

 

While the satisfactory vales of 
PM with respect to P, V and W are confined to the 

permissible load-interaction region oabc, Figure 3, the more critical selection region is 

further limited to the rectangle odbc, where the module can develop its largest displacement 

capacity at incipient collapse without violating the prescribed yield criteria. Lines ab and bc 

indicate the outer permissible limits of the interactive forces P, W and V corresponding to 

failure modes III-2and II respectively.  They also serve as the auxiliary displacement range 

indicators and  of the same failure modes. It may be instructive to note that the maximum 

ultimate displacement range 11  displayed by line ab corresponds to the ultimate 

lateral force rang )1(20  P
ucr MVhf , and that the maximum ultimate displacement 

range 10    displayed by line bc corresponds to the ultimate lateral force 

range ./0 abLMW P
ul   Points a and c represent states of overloading where the module 

becomes unable to sustain combined forces. 

 

3.2. Step 2-Plastic displacements 

Maximum deformations of the module at incipient collapse are associated with the stiffness 

of the last remaining stable segment of the system that contains the locations of formation of 

the last set of plastic hinges prior to failure. In other words the accuracy of the computed 

displacements at incipient collapse depends also on the accuracy of the assumed sequence 

of formation of plastic hinges throughput the loading history of the structure. In this context, 

the largest maximum displacements are always associated with the correct positioning of the 
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last individual or set of plastic hinges. The challenge therefore, is to envisage the patterns 

and sequences of formation of the plastic hinges during the loading history of the structure, 

[35-38] etc. An examination of the plastic failure patterns (1b) through (1f), in conjunction 

with the generalized plastic moment distribution diagram of Figure A1(a), Appendix 1, 

reveals two dominant sequences of formation of plastic hinges depending on the relative 

strengths of the two beams and the magnitudes of gravity forces Wu and Wl. For relatively 

large forces Wu and Wl, i.e., 1 and 1 ≥ α ≥ -1, the first and second sets of plastic hinges 

may form at points B and B , and C and C respectively. For a definition of the relative 

magnitudes of uW and lW the reader is referred to the interaction diagram, Figure 3, where 

line db and point b separate displacement ranges α and β, which in tern correspond to 

relatively large and small gravity forces respectively. In other words relatively large gravity 

forces, identified by abLMW P

ul / , are those associated with beam and combined 

mechanisms, whereas by contrast small gravity forces, abLMW P

ul / , can only be 

associated with sway type mechanisms. 

 

3.2.1 Case 1: Mode III-3, relatively large span loads 

For relatively large forces uW and lW , i.e., 1  and, 11  the first and second sets of 

plastic hinges may form at points A and A , and, B and B respectively. The maximum 

lateral displacements of the generalized computational template/module at incipient 

collapse in the   range can be expressed as; 
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The minimum drift-minimum weight association, [39], for closed loop rectangular 

frames states that; the efficient or minimum weight design of the subject module is one 

involving beams and columns of equal strength and stiffness. Therefore, putting; 1 , 

III lu  , 
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P
u MMM  and WWW lu  in Eq. (2) gives after rearrangement; 
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The validity of Eq. (2a) may be verified by checking its particular solutions against 

existing results. For identical upper and lower beams under equal span loads at a=b=L/2, 

Eq. (2b) reduces to the well-known, [40] relationship:  
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A derivation of Eq. (8) is presented in Appendix 1. 1 , at point b of the interaction 

diagram represents an ideal combination of ,PM P, W and V in that it allows the full 

displacement development potential of the module in association with a combined 

mechanism such as III-3. However it should be born in mind that point b is also associated 

with sway type mechanism II that exhibits the same ultimate load carrying potential, but as 

elaborated in the following section, tends to develop larger displacements at collapse. 

 

3.2.2 Case 2: Mode II, relatively small span loads 

For relatively small forces uW and lW , i.e., 1  and 1 , the first and second sets of 

plastic hinges may form at points C and C , and A and A respectively. The maximum 

lateral displacements of the generalized computational template/module at incipient 

collapse in the   range can be expressed as: 
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A derivation of Eq. (11) is presented in Appendix 2. For the particular case of 1  Eq. 

(11) reduces to: 
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The validity of Eq. (11) may also be verified by checking its particular solutions against 

existing results. For identical upper and lower beams under equal span loads at a=b=L/2, 

Eq. (12) reduces to the previously established, [41] formula: 
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A derivation of Eq. (13) is presented in Appendix 2. Note that both displacement Eqs. (10) 

and (13) contain the relative stiffness term . The location of point b in Figure 3 is 

significant, in that both failure mechanisms II and III-2 share the same demand-capacity ratio, 

)1(2/ P
ucr MVhf  but result in different maximum displacements at the onset of collapse 

This implies that care maximum should be exercised in computing the maximum lateral 

displacements corresponding to point b .The auxiliary displacement ranges  and   are 

associated with the first sets of plastic hinges forming at mid span and right hand ends of the 

beams of the subject modules respectively. Solutions (10) and (13) also coincide 

at ,1 ,0 for W=0 and )1(  P
ucr MVhf . 
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4. GENERATION OF SUB-FRAMES 

 
It has been argued that a regular sub-frame, such as that shown in Figure 4(a) may be 

construed as being composed of n sufficiently strong and stiff closed loop modules, such as 

those depicted in Figure 4(c). Integers j = 0, 1, 2…n, and i = 0, 1, 2… m are non-

dimensional coordinates introduced to identify the elements of the structure. A 

representative sub-frame is one which has been designed to perform in conformity with pre-

set target criteria, and as such may be reproduced, in accordance with certain scaling rules 

to reconstruct all other sub-frames of the frame. 

 

 
Figure 4. (a) Generalized sub-frame at level i, (b) Collapse pattern involving beams only, (c) 

Basic modules as constituent elements of the sub-frame, (d) Collapse patters corresponding to 

3c, (e) Combined collapse patters of individual modules, (f) Combined collapse mechanism of 

the sub-frame 

 
A properly designed/generated sub-frame should also be capable of distributing the 

racking reactions to as many supports as possible in a safe and economic manner. In order to 

generate the subject sub-frame without resorting to computers or complicated numerical 

analysis, recourse has been made to the following axioms and structure specific principles 

that: 

 

 The sway collapse mode of the prototype, figures 1(d) and 1(f) can be studied through the 

collapse mechanisms of the corresponding closed loop modules, Figure 4(c). 

 Large gravity loads tend to diminish the lateral carrying capacity and sway development 

potentials of closed loop modules. Therefore, beam mechanisms should be disallowed. 

 The lateral carrying capacity of the sub-frame can be assigned to any one or any number of 

modules provided that all pertinent rules and conditions are observed. 

  If the strength of each module is selected as the minimum strength of its beams when 

acting as simply supported members, then the entire sub-frame can be expected to fail 

through a combined or purely sway type mechanism.  
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  The first set of plastic hinges forms at beam ends with the largest demand–capacity ratio. 

In other words, the first set of plastic hinges tends to form at the stiffer ends of the stiffest 

module. If there is more than one module with equal maximum stiffness then the first set 

of plastic hinges will form at the stiffer ends of the weakest beams. 

  The maximum displacements at first yield are associated with the module containing the 

first set of plastic hinges. Since the maximum allowable drift ratio at first yield, Y  is 

associated with the stiffest module, then the minimum stiffness of the stiffest module 

dominates the elastic performance of the sub-frame. 

  The last set of plastic hinges form at beam ends with the smallest demand–capacity ratios. 

In other words, the last set of plastic hinges form at the stiffer ends of the most flexible 

module. If there is more than one module with equal minimum stiffness then the last set of 

plastic hinges will tend to form at the more flexible ends of the weakest beams. 

  The maximum displacements at incipient collapse are associated with the module 

containing the last set of plastic hinges. Since the maximum allowable drift ratio at 

collapse, P is associated with the most flexible module, then the minimum stiffness of 

the most flexible module governs the magnitude of the minimum elastic properties of the 

members of the sub-frame. 

  The columns remain elastic throughout the history of loading of the structure. 

The most economical solution using prismatic members is associated with the ultimate 

strength and elastic properties of the stiffest and the most flexible modules that contain the 

first and last sets of plastic hinges respectively. 

 

4.1 Minimum module strength for sway mechanism 

Consider the plastic design of the sub-frame of Figure 4(a) under the symbolic mid span 

gravity forces jiW , and upper chord level shear force .iV To prevent beam type failure the 

strength of each module may be selected as .8/)4/( ,,2
1

, jjijji
P

ji LWLWM   However, the 

load resistance interaction diagram of Figure 3 suggests that in order to resist the combined 

effects of jiW ,  and iV  , the ultimate strength of each beam of each module can be increased 

from
P

jiM , to )( ,,
P
ji

P
ji MM  . In addition the beams of the sub-frame may be strengthened, 

say by added flange plates or weakened by means of reduced beam sections, [42], to control 

the sequences of formations of the plastic hinges and/or to fine-tune the performance of the 

system. The virtual work equations of the sway and the combined mechanisms of figures 

4(b) and 4(f), including the effects of the enhancements can be expressed as: 
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respectively. Since  
n P

ji

n

jji MLW
1 ,1 , 8 , Eqs. (14) and (15) can be reduced to: 
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 and     
8
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,

1


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

criP
ji

n

j

fhV
M  (17) 

 

respectively. The final design of the sub-frame is governed by the more demanding value of 

Eqs. (16) and (17), which may be used to decide upon the preferred mechanism to resist the 

force .iV  In other words if, 
n

iicri LWfhV
1

)/(  then sway type mechanism will control 

the ultimate carrying capacity of the structure , otherwise a combined type failure will 

prevail. Several options for the selection of 
P
jiM , are available. It would be reasonable, 

from a purely material consumption point of view, to assign the entire lateral force, or 

greater portions of it, to the shortest and stiffest/or the shorter and stiffer modules of the 

frame respectively. For instance, if as option 1, the entire shear force iV is assigned to the 

shortest module of the sub-frame of Figure 4, with sshort LL  and 0 ,  then the required 

additional moment of resistance of the selected module and its beams may be computed as 

.4/, cri
P
si fhVM   Next, assuming that the self-weight of each module, jig , , can be 

estimated in terms of its own plastic moments of resistance and a constant of 

proportionality, g, i.e. 
p

jijji MLhgg ,, )(2  , then the self-weight of the complete sub-frame 

may be estimated as: 
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In practical terms this implies rendering all other modules as ineffective against lateral 

forces. However, if all modules of the sub-frame are to participate as load resisting 

elements, then the next best solution may consist of either distributing the lateral force 

equally between all modules of the sub-frame, in which case the required enhancement 

would be the larger of the quantities: 
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or by enhancing the strengths of the individual modules in proportion with their minimum 

moments of resistance, 8/,, jji
P

ji LWM   and/or other physical properties. The former choice 
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gives: 
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While option 2, characterized by Eq.(20) indicates a lighter structure than (18) the 

difference diminishes as sL  approaches ,/
1

nL
n

i  and because of constancy of hVi , the two 

solutions coincide for LLL is  . As a third option consider the proportional enhancement 

of all loaded beams of the sub-frame as characterized by 0 and .,,
P

ji
P

ji MM  Eqs. 

(16) and (17) give the governing value of  as the greater of: 
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respectively. The corresponding self-weight may be assessed as: 
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Eq.(22) indicates a relatively heavier solution than (20). However the two solutions 

coincide at .LLi   For most practical cases iL  are either equal or nearly equal and the 

difference between (20) and (22) becomes insignificant. Therefore the stiffer selection 

option may be better suited for displacement studies.  

 

4.1.1 Demonstrative Example 1 

Consider the plastic design of the 
thi  level sub-frame of a four bay (n =4) moment frame 

with ,1 hLL  ,22 LL  LL 33   and LL 44  , under the combined actions of a lateral 

shear force V=10WL and mid span gravity forces ,WWi   and compare the results of the 

three member selection strategies described above. 

Assume 0 and .1crf  

Solution: Since 
m

iicri LWfhV
1

)/( then both sway and combined mechanisms 

yield the same results. The minimum or base strength of the beams of sub-frame may be 

computed as ,8/1, WLM P
i  ,8/22, WLM P

i  8/33, WLM P
i   and 8/44, WLM P

i   for all three 

selection options. The complete solution is presented in Table 1. 

It may be observed from the results of Table 1 that all three strategies result in 

comparable material consumption. 
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Table 1. Parametric solution, Example 1 

Option 
P

jiM ,  Eq. 2/ gWLG  Eq. Shear design strategy 

1 4/Vh  - 20.00 (18) By shortest module 

2 nVh 8/  (19) 18.75 (20) Equally distributed 

3 
P

jiM ,  (21) 20.00 (22) Proportionately distributed 

 

4.2. Minimum module stiffness for sway mechanism 

Having established the rules of minimum strength for the preferred design mechanisms, an 

attempt can now be made to select the properties of the 
thi level modules in such a way as to 

satisfy the stipulated target drifts, Y  at first yield and P at incipient collapse. As the 

second step of the design process, the response of the modules should be related to the 

corresponding displacement ranges,  or   on the interaction diagram. If the properties of 

the most flexible and the stiffest modules are identified by suffices f and s respectively, then 

using Eq. (10), the corresponding drift ratios for the  range at first yield and incipient 

collapse may be expressed as: 
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respectively. With YiY  ,  and PiP  ,  known, the plastic to elastic drift ratio of the 

system may be assessed as YP  / . Dividing (23) by (24) and rearranging, gives: 
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as the characteristic plastic response ratio of the first and last failing modules of the sub-

frame, in which case the forces causing first yield and plastic collapse may be computed as: 
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where )/(,, jijiji LhIk  may be regarded as an indication of the relative stiffness of the 

module. A brief derivation of YV is presented in Appendix 3. A similar argument may be 
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presented for the   range response by using Eq. (13) and following the same steps as Eqs. 

(23) through (26), in which case the plastic to elastic drift tatio indicator may be expressed 

as: 
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Once 
P

jiM , and jiI , have been determined for any level i, the preliminary design of the 

original sub-frame can be completed as: 

 

 jiji IJ ,,  , ,,,
P

ji
P

ji MN   1,,,  jijiji JJJ  and 
P

ji
P

ji
P

ji NNN 1,,,   (28) 

 

where, 1  is the code specified column overt strength factor. In addition, the properties 

of the beams of two adjoining sub-frames may be computed as: 

 

 jijiji JII ,1,,     and   
P

ji
P

ji
P

ji MMM ,1,,   (29) 

 

The purpose of the following example is to demonstrate the applications of the 

displacement Eqs. (23) and (24) and how to allow for an overloaded module. 

 

4.2.1 Demonstrative Example 2 

Design the sub-frame of example 1 for V=1423.43 kN, ,4/51 VW   ,0432  WWW  

0024.0P  radians, ,2  and E=199,945 MPa. As a different selection strategy, use 

uniform sections for the chords of all lateral resisting modules. 

Solution: Select 32/58/11min,1 VLLWM P   and .432
PPPP MMMM   The 

inequality 8/2 11LWVh  , implies that module No.1 is overloaded and as such is unable to 

contribute to the lateral carrying capacity of the sub-frame. However the three remaining 

module are capable of resisting the entire external shear force through a partial sway 

mechanism, i.e. .43 PMVh   Since modules 2 and 4 are the stiffest and the most flexible 

respectively of the remaining modules, then from Eqs. (24) and 

(25): PEVhIII 72/5 2
43   and 5/6.2 II  respectively. Next Eqs.(25) and (26) yield, 

upon substitution: ,01 K ,3/24 3
22 hEIK  ,5/102 34

1
hEIKi  ,17/82 YVV   

24/17VVY   and 3/2 VV   respectively. Consequently Eq. (23) reduces to 

2
3

2, 24/ EIVhY  . The complete preliminary design of the subject sub-frame is presented 

in Table 2. (The moment of inertia of the none-contributing module No. 1 has been selected 

arbitrarily as, II 21  ). 
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Table 2. Parametric solution, Example 2 

j  PP
j MM /  

PP

j MN /  II j /  IJ j /  

0 - 15/8 - 2 

1 15/8 23/8 2I 3 

2 1 2 6/6 2 

3 1 2 1 2 

4 1 1 1 1 

 
Results of computer analysis as recorded in Table 3, verify the accuracy of the proposed 

solution. 2,PV  and 2,P are intermediate results describing the failure load and the 

corresponding lateral displacement of the stiffest module as the strongest component of the 

example sub-frame. 

 
Table 3. Comparative, PDA/computer results, Example 2 

 PM (kN-m) PV  (kN) YV  (kN) 2,PV (kN) 2,P  Y  P  

PDA 361.50 1423.43 1008.26 1008.26 0.00120 0.00120 0.00240 

Computer 361.50 1423.43 964.09 998.16 0.00121 0.00118 0.00246 

 

Design solution of example 2, not only satisfies the requirements of the uniqueness 

theorem, [43-44], i.e. mechanism, equilibrium, boundary conditions and the yield criteria 

but also satisfies the prescribed displacement conditions. And as such, for the given 

geometry, it cannot be far from a minimum weight product. Nevertheless, several other 

satisfactory solutions, including 8/91 VLM P   and 0432  PPP MMM  can also be 

suggested. 

The purpose of the next example is to demonstrate the applications of the displacement 

Eqs. (13) and (27), control the sequence of formation of the plastic hinges and how to allow 

for loading on all modules. 

 

4.2.2 Demonstrative Example 3 

Redesign the sub-frame of Figure 4(a) for V=F=569.37 kN, ,51 WW  WW 22   and 

59.3543  WWW  kN. Select the strength and the stiffness of the modules in such a way 

as to control the sequence of formation of the plastic hinges. s =1, f =4, 24, i  and 

.13,2,1,  iii   

Solution: Individual beam mechanisms give ,8/51 WLM P   8/42 WLM P  , 

8/33 WLM P   and .8/44 WLM P   Doubling the resistance of the beams automatically 

reduces the demand capacity ratios of the beams to half for vertical loading and increases 

the lateral carrying capacity of the sub-frame to its permissible maximum 

.168/)4345(224
4

1
WLWLLWFh jj    Since at V=0 and enhanced 
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moments,
P
jM2 the system is still elastic, then the entire sub-frame can respond linearly until 

the formation of the first set of plastic hinges where the combined demand-capacity ratio is 

closest to unity. Furthermore, since the increased strengths, 
P
jM2 are not equal, it would be 

reasonable to select jI  in proportion to ,P
jM whence substituting 1j in Eq. (27), it gives: 
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 (30) 

 

This gives: ,35/351 II   ,35/482 II   ,35/513 II   ,35/884 II   ,7/1 LIk   

LIk 35/42  , ,35/33 LIk   LIk 35/44   and Consequently 
n

jjYjY kkFV
1, / gives: 

.178/35,1 YY FV   Since the maximum gravity moments at the two right hand corners are 

still elastic at 8/52/1 WlM P  , then the shear force needed to impose first yield at these 

locations may be computed as: 6435/1875  VFY .This in turn gives, ,64/5,1 VV Y   

,
3072

35
1

2

31
1

24 1

3
1

11

3
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12

7

EI

hM P

P   and 
4

2
4

6

11

EI

hM P

P  .  

Once again, as indicated in Table 4, there is excellent agreement between manually 

computed and machine generated results. 

 

Table 4. Comparative, PDA/computer results, Example 3 46

1 10257.719 mmI   

 PM (kN-m) PV  (kN) YV  (kN) 1,PV (kN) 1,P  Y  P  

PDA 135.58 569.37 237.66 444.82 0.00169 0.0004 0.00336 

Computer 135.58 569.37 234.58 519.82 0.00172 0.0004 0.00338 

 

4.3. Proportioning and regeneration of the multi-story moment frame 

The individual modules of the 
thi level imaginary sub-frame of Figure 4 were selected in 

such a way as to share the same drift ratios at first yield and incipient collapse while 

remaining in equilibrium with external racking shear force and moment of the same level 

during both phases of loading. It follows, therefore, that if all other sub-frames of the 

structure are designed in a similar fashion for the same initial and final drift ratios, then the 

properties of the individual members can be determined through direct proportioning. For 

instance, if the 
thm level members are known then for constant drift im   , the

thi level 

member properties may be proportioned as: 
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The fraction icrmcr ff ,, /  is generally very close to unity and may be equated to 1 for all 

practical purposes. Applications of Eqs.(31) and (32) may best demonstrated by the 

following simple examples. 

 

4.3.1 Demonstrative Example 4 

 

Provide a preliminary efficient design for the four story, grade beam supported moment 

frame of Figure 5 subjected to the lateral forces: mFiFi / , and drift limitations 

0017., Yi  radians and 0034., Pi  radians. Assume 1,, jicrf  and that example 3 

describes the response of the roof level sub-frame of the structure. 

 

 
Figure 5. Four story moment frame. Loading, layout, Shear and racking moment diagrams 

 

Solution: The moments of resistance of the roof level modules may be summarized in 

Table 5 as: ,4/54/51,4
PP MWLM  ,4/42,4

PP MWLM  4/34/33,4
PP MWLM  and 

.4/44,4
PP MWLM   

Similarly, the moments of inertias of the same modules may be registered as: 

,35/351,41,4 IJI  ,35/482,42,4 IJI  35/513,43,4 IJI   and .35/444,44,4 IJI   

Next, the racking moments of  the 1
st
,2

nd
 and 3

rd
 level sub-frames may be rewritten in terms 

of the roof level moments MM 4  as: ,4/151 MM  4/92 MM  and 4/73 MM  , 

respectively. 
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Table 5. Summary, design of modules of Example 4
*
 

  j=1  j=2 

i   PM  I  IJ /   PM  I  IJ /  

4 1.00 1.25 1.00 1.00  1.00 1.37 1.37 

3 0.57 2.19 1.30 1.75  1.75 1.78 2.40 

2 0.44 2.81 1.50 2.25  2.25 2.06 3.08 

1 0.00 4.69 1.50 3.75  3.75 2.06 5.14 

         

  j=3  j=4 

i   PM  I  IJ /   PM  I  J/I 

4 1.00 0.75 1.46 1.46  1.00 1.26 1.26 

3 0.57 1.32 1.90 2.56  1.75 1.63 2.21 

2 0.44 1.69 2.19 3.29  2.25 1.89 2.84 

1 0.00 2.81 2.19 5.48  3.75 1.89 4.73 

 

Eqs. (28) and (29) may now be used to complete the preliminary efficient design of the 

subject frame as summarized in Table 6. 

 

Table 6. Summary, design of 4 story of Example 4
*
 

 j=0  j=1  j=2 

i PN  J   PM  PN  I  J   PM  PN  I  J  

4 1.25 1.00  1.25 2.25 1.00 1.00  1.00 1.75 1.37 1.37 

3 3.44 2.30  3.44 3.94 2.30 1.75  2.75 3.07 3.15 2.40 

2 5.00 2.80  5.00 5.06 2.80 2.25  4.00 3.94 4.03 3.08 

1 7.50 3.00  7.50 8.44 3.00 3.75  6.00 6.56 4.12 5.14 

0 4.69 1.50  4.69 - 1.50 -  3.75 - 2.06 - 

             

 j=3  j=4 

i PM  PN  I  J   PM  PN  I  J  

4 0.75 1.75 1.46 1.46  1.00 1.00 1.26 1.26 

3 2.07 3.07 3.36 2.56  2.75 2.75 2.89 2.21 

2 3.01 3.94 4.09 3.29  4.00 2.25 3.52 2.84 

1 4.50 6.56 4.38 5.48  6.00 3.75 3.78 4.73 

0 2.81 - 2.19 -  3.75 - 1.89 - 

* PM and ,PN and, I and J  have been summarized as multiples of PM and I respectively. 

 

 

5. CONCLUSIONS 

 
This article has introduced three simple ideas that lead to efficient design of regular moment 

frames-the finite module concept, the Plastic design analysis and a method of Plastic 

displacement control. 



A PRACTICAL WEIGHT OPTIMIZATION FOR MOMENT FRAMES UNDER... 

 

307 

An analytic procedure has been provided to facilitate and revive interest in plastic design 

of efficient moment frames. The philosophical differences between PDA and PAD have 

been discussed and demonstrated through generic and numerical examples. In PDA collapse 

modes and stability conditions are imposed rather than investigated. The theory of structures 

is applied rather than followed. 

Several numerical solutions have been presented to demonstrate the accuracy and 

applications of the proposed concepts and design formulae. 

In upholding the tradition, [45, 46] it has been shown, contrary to the common belief, 

that displacements associated with plastic design, can be computed manually and utilized 

advantageously without resorting to lengthy analysis or high power computers. The 

proposed methodologies offer displacement control options at first yield and incipient 

collapse. It has been shown that predetermined sequences of formation of plastic hinges 

could be arranged through rational selection of the strengths and stiffnesses of the 

constituent modules of the framework. 

The advantage of the proposed concept over traditional methods of design is its ability to 

provide economic/optimized solutions while maintaining displacement control throughout 

the loading history of the moment frame. 

In order to develop the proposed design concept for designing efficient moment frames 

without resorting to computers or complicated numerical analysis, recourse was been made 

to several axioms and structure specific principles, notably that: The full lateral load 

carrying and displacement development capacities of constitutive modules under combined 

gravity and lateral loading at incipient failure can be realized if the strength of the module is 

matched with the maximum static moments of its beams acting as simply supported 

elements. And, if the lateral performance of such modules can be enhanced by doubling the 

gravity capacity of their beams, then the performance of sub-frame as a whole can also be 

improved by doubling the plastic carrying capacities of its loaded beams. 

The proposed procedures, as they stand are particularly useful for the preliminary design 

of short to midrise building structures. 
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APPENDIX1: CASE 1, MODE III-3 DISPLACEMENT COMPUTATION 
 

Let lc,  and rc, represent the contributions of the left and right hand columns to the overall 

lateral displacement of the module. Next performing the virtual work summation using 

moment diagrams A1(a) and A1(c) it gives; 
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Figure A1. (a) generalized plastic moment distribution, (b) unit load moment diagram 

corresponding to ,1  (c) unit load moment diagram corresponding to 1  
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Similarly if uB,  and uB, represent the contributions of the upper and lower beams to the 

overall lateral displacement of the module, then performing the virtual work summation 

using moment diagrams 1g with and 1k it gives; 
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Next putting; 1 , in Eqs. (A4) and (A5), it gives, 
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The sum total of mathematical contributions of all four elements gives the maximum 

lateral displacement of the module at incipient collapse, thus; 
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APPENDIX2: CASE 2, MODE II DISPLACEMENT COMPUTATION 
 

Let lC ,  and 0, rC  represent the contributions of the left and right hand columns to the 

overall lateral displacement of the module. Next performing the virtual work summation 

using moment diagrams A1(a) with 1 and A1(b) it gives; 
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Similarly if uB,  and uB, represent the contributions of the upper and lower beams to the 

overall lateral displacement of the module, then performing the virtual work summation 

using the same moment diagrams, it gives; 
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APPENDIX3: MAXIMUM DISPLACEMENTS AT FIRST YIELD 
 

The lateral displacements of the individual modules of Figure 3(c) can be expressed as; 
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