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ABSTRACT 
 

This paper presents an efficient method for updating the structural finite element model. 

Model updating is performed through minimizing the difference of recorded acceleration of 

real damaged structure and hypothetical damaged structure, by updating physical parameters 

in each phase using iterative process of Levenberg-Marquardt algorithm. This algorithm is 

based on sensitivity analysis and provides a linear solution for nonlinear damage detection 

problem. The presented method is capable of detecting the exact location and ratio of 

structural damage in the presence of noise or incomplete data. 
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1. INTRODUCTION 
 

Within the structural health monitoring subject, detection and localization of damage is 

currently of growing interest among researchers [1]. The detection methods generally can be 

divided into two categories [2], the methods which are based upon static responses [3-5] and 

the other methods which use dynamic data [6-11]. The prevailing interest among researchers 

is focused on damage detection using vibration data [12, 13]. 

Since the damage has a nonlinear characteristic, the direct solution of the resulted system 

of equations is limited or maybe impossible. This set of equations should be treated by 
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numerical methods through an iterative process. Current methods of damage detection are 

mostly composed of updating finite element model through minimizing the difference 

between responses of actual damaged structure and hypothetical damaged structure. Some 

of the mentioned methods apply the explorer optimization algorithms to update the 

structural model during an iterative process [14-18] . The other methods based on sensitivity 

analysis, utilize various algorithms to update the finite element model by minimizing the 

objective function.  

Teughels and roeck [19] presented two sensitivity-based algorithms, modified Gauss-

Newton and coupled local minimizers (CLM), for updating the finite element model. They 

detected the location and ratio of damage in bridges by model updating through 

minimization of the difference between frequencies and mode shapes.  

Bakir et al [20] implemented another sensitivity-based method, trust region algorithm, 

for updating the finite element model. They obtained the place and damage ratio in 

reinforced concrete frames by minimizing the differences between the eigenfrequency and 

eigenmodes residuals. Their algorithm is also efficient where there is noise data.   

Wu and Li [21] applied a two-stage sensitivity-based model updating procedure which 

was developed for structural health monitoring of IASC-ASCE benchmark steel structure. 

They concluded that the best estimation for updating parameters can be reached by using the 

Bayesian estimation technique.  

Esfandiari et al [11] updated the structure model using a least square algorithm with 

appropriate stabilization method. Their method can detect the ratio and location of damage 

in trusses, where the noise exists in the frequency response function. 

Lee [22] presented a method for identifying multiple cracks in a beam using the Newton-

Raphson method, sensitivity analysis and natural frequencies. In his method, he used the 

natural frequencies of damaged structure. 

However various methods have been developed for model updating, but still the novel 

ideas are being presented. The main goal of this paper is to develop an efficient method for 

updating the structural finite element model using Levenberg-Marquardt algorithm. This 

algorithm is based on sensitivity analysis and provides a linear solution for nonlinear 

damage detection problem. The presented method is capable of detecting the exact location 

and ratio of structural damage in the presence of noise or incomplete data. 

This paper is organized as follows. First the fundamentals of damage detection are 

reviewed. Then, the formulation of Levenberg-Marquardt algorithm for model updating and 

the damage detection method are presented. Finally, results of the numerical simulations of 

three space structures are discussed and the efficiency of the proposed approach is 

investigated. 

 

 

2. FUNDAMENTALS OF STRUCTURAL HEALTH MONITORING 

 

The main idea of updating methods for damage detection is grounded on the fact that 

changes in structural response are due to changes in physical properties. In other words, 

during a reversed model updating the detailed changes of physical model can be found using 

the known responses. The registered responses of damaged structure are functions of the 
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structural damage. It means that a specific damage causes a unique response. Hence one can 

search for this specific damage by knowing its associated response. The damage has a 

nonlinear characteristic however it can be simulated bay changes in structural parameters 

such as Young modulus or section area of members. The damage equation can be stated by 

a residual function: 

 

( )r R X R
d

   (1a) 
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X x x x xn i    (1b) 

 

Where r is the residual function, R(x) and Rd are the response vectors of hypothetically 

damaged structure and existing damaged structure respectively. X represents the damage 

vector which consists of all structural members’ damage (xi) and n is the number of 

members. The goal of damage detection is to find the damage vector X, using the response 

vector of damage structure. 

 

 

3. UPDATING PARAMETER 
 

The updating parameter is the unknown physical feature of the model. In this paper the ratio 

of updated modulus of elasticity (Ee) to its initial value ( ) is considered as updating 

parameter. The dimensionless updating parameter or is defined as follows: 
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There is a linear relation between the updating parameter ( ) and stiffness matrix of 

structural members: 
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Where 
0

eK  and 
eK  are respectively the initial and updated stiffness matrices. K  is the 

global stiffness matrix of structure and 
uK  is the stiffness matrix of members of 

undamaged members. n is the number of members which are updated. 

 

 

4. OBJECTIVE FUNCTION 
 

The damage detection procedure using model updating is similar to identification of 

unknown parameters in an optimization problem. Hence the damage index of structural 

members is formulated as optimization parameters so that the updated model can be able to 

(1

a) 

(1

b) 



F. Sarvi, S. Shojaee and P. Torkzadeh 

 

210 

simulate the response of damaged structure. By determination of error between responses of 

healthy structure and updated structure, and minimization of objective function in each step 

of iterative process,  is updated. 

Minimizing of the objective function is defined as a non-linear least square minimization 

problem that is given by sum of squared differences [23]. 
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Where r is the residual value of damage function. 

Model updating is carried out by minimizing the difference between the acceleration 

response of actual damaged structure and hypothetical damaged structure. 

 

 

5. LEVENBERG-MARQUARDT ALGORITHM 
 

The presented method solves the nonlinear least square problem Eq. (4) using a sensitivity 

based optimization procedure. Gradient and hessian Matrices for optimization of objective 

function are defined as follows: 

 

( ) ( )
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Where J is the Jacobian matrix of first order partial derivatives of residuals. The hessian 

matrix is reformed in Levenberg-Marquardt algorithm [24]. 
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Updating parameter is searched through an iterative process proposed by Marquardt, and 

the structural response is simulated and the objective function is minimized. In the Eq. (6), λ 

is the damper factor and is assumed as a small value in first step. If the error rate reduces 

compering to previous step, λ decreases by a constant coefficient and if the error rate 

increases, λ increases with the same coefficient. Eventually the updating process using 

Levenberg-Marquardt algorithm is summarized as follows: 

Updating begins using the formula (7). 

Error rate (objective function) is calculated. 

If the error rate increases, the λ Coefficients in Eq (6) increases and the error rate is 

calculated. This process continues until the error is reduced. 

λ Coefficient is reduced and the process is resumed. 

Since hessian in the algorithm is proportional to f variation, a correct path is traveled to 



DAMAGE IDENTIFICATION BY FINITE ELEMENT MODEL UPDATING USING ... 

 

211 

reach the solution. In fact, in the direction of low curvature (for example, a relatively flat 

land), the path is covered with a long step and in the direction of high curvature (e.g. 

valleys) the path is covered with a short step. In this way, damage detection is properly 

solved. The only deficiency of this method is that in updating process, hessian matrix may 

not be invertible. In this paper, we use pseudo-inverse singular value decomposition to treat 

this issue. 
 

 

6. JACOBIN MATRIX IN DAMAGE DETECTION OF PROBLEM 

 

The Jacobian or Sensitivity matrix is the residual first-order derivative (r) with respect to 

vector of updating parameters (X). Sensitivity matrix is obtained from the following 

equations:  
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According to the above mentioned equations, the sensitivity matrix is obtained by 

forward difference technique [25]. In these equations Rdj is the response of artificial damage 

of the jth member, Rh is the response vector of healthy structure and n is the number of 

members. It should be noted that for the solution of equations using the Gradient 

optimization methods, the number of equations should be greater than the number of known 

variables. Here the considered structural response is the recorded acceleration of some 

nodes under the impact load which is applied on the load during 0.005 seconds. Therefor the 

number of equations is sufficient to solve the system of equations.  
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lA  is the response acceleration vector at the l-th degree of freedom (sensor locations). 

The dimension of lA  is nt1 and nt is the number of recorded accelerations steps. n is the 

number of structural parameters that must be known. Therefor the number of sensitivity 

matrix columns is equal to the number of components of updating parameter vector and the 

number of its rows is equal to the total number of recorded responses by sensors. 

 

 

7. SINGULAR VALUE DECOMPOSITION 
 

One of the most important decomposition tools to facilitate the solution of large linear 

system of equations is the singular value decomposition method [26] In this method, each 

matrix with any dimension can be converted to the multiply of three matrices that one of 

them is diagonal and the other two are Orthogonal matrices. This method is also one of the 

diagonalization methods. In this method a specific matrix is decomposed according to the 

following equation: 
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The decomposed matrix dimension is nrm. MRnrm, U= (u1. . . unr) Rnrnr, V=(υ1. . . 

υnr) Rmm, are square matrices. The columns of U and V matrices are called left-singular 

and right-singular vectors respectively. Σ is the diagonal matrix with singular values. The 

left-singular and right-singular vectors and the diagonal matrix are obtained as follows: 

 The left-singular vectors of M are eigenvectors of (M*MT). 

 The right-singular vectors of M are eigenvectors of (MT *M). 

 The non-zero-singular values of M are the square roots of the non-zero eigenvalues 

of both (M * MT) and (MT *M). 

According to the decomposition resulted from Eq. (11), the pseudo-inverse matrix is 

calculated using following equation. 

 
TM V U    (12) 

 

∑+ can be easily calculated by the above mentioned explanations: 
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8. NOISE MODELING TO MEASURED DATA 
 

The responses of damaged structures are measured by sensors in a laboratory or from actual 

structure. Therefore there is a noise in measured data sue to sensors.  Since in the present 

study the responses of damaged structure are obtained from the analysis of numerical model, 

the noise should be considered in responses. This error is called measurement error and is 

applied to the responses by following equation [27] 

 

a = a + E N ameasured calculated p noise calculated   (14) 

 

Where  is the acceleration response vector with error and is the 

acceleration response vector calculated from Damage structure, Ep is the Noise level (e.g. 

1percent, 5percent,…). Nnoise is the normal distribution vector with mean zero and unit 

standard deviation. 

 

 

9. DMAGE DETECTION 
 

Optimization of the objective function with numerical methods begins form a starting point 

(Initial value variables vector) till another point is obtained and optimizing continues with 

repeating this process to the final point. 

The steps of optimizing with an effective method for structural damage detection are 

presented as follows: 

 Proper choice of the starting point and the control parameters of the algorithm, 

 Physical properties of healthy structure are the starting point to update the finite 

element model. 

 Selecting the appropriate factor λ is important and it differs for different cases. 

 Updating the sensitivity matrix 

 Updating the damage index 

 Damage index using the suggested relation- ship Levenberg - Marquardt is updated. 

To stabilize the updating process, singular value decomposition is used: 
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Figure 1. The flowchart for presented method 

 

 

 Updating the objective function 

 If the value of objective function is reduced it is accepted. 

 If the objective function value is more than the previous value, a new value is ascribed 

to the λ and the value of X is calculated again.  
 Using the above relations and new damage index, the objective function is again 

updated value is calculated. 

1 ( ) ( )T T

i i i iX X V U S X r
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 If the value of the objective function decreases, the updated damage index is 

acceptable. 
 The recurrent updating of the damage index to the decrease of objective function 

value will continue for 5 steps. 

 If the updated damage index doesn’t change the objective function, updating process 

will continue with the failure index of previous stage 

 To continue updating in the next stage, λ value decreases. 

The steps are given in the following flowchart: 

 

 

10. NUMERICAL RESULTS  
 

To demonstrate the efficiency of the Levenberg-Marquardt algorithm in solving complex 

discrete structures, three space-structures are damage detected. Using the acceleration 

response recorded in some points, structure damage detection is done by extension of 

Levenberg – Marquardt algorithm in updating the structure models. The Riley damping has 

been used to model the structural damping. Triangular impulsive load in time step 0.005sec 

is induced vertically on the structure nodes. 

   Since the acceleration of the damaged structure is measured in laboratory, they are the 

origin of the errors related to Eq. (14). 
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Figure 2. 52-element dome structure 
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10.1 SPACE STRUCTURE 52-MEMBERS DOME 

A fifty-two member- dome as shown in Figure 2 is considered here to confirm the proposed 

method. Finite element model of the structure is composed of 21 nodes with 39 active 

degrees of freedom. 

In this example, according to the reference, some sensor patterns have been considered as 

shown in figure 3. Also, the number of the nodes and members are shown in figure 2. 

Various conditions and pattern of damage are given in Tables 1 and 2 respectively. In figure 

3.a and b, the sensors record the responses in three directions and in case c sensors are able 

to record the response in one direction. In case c,   shows the downward direction and in 

case d, it’s assumed that sensors are located for all degrees of freedom. 

 
Table 1: Different condition for 52-element dome 

Noise level Sensor pattern Scenario Condition 

0 d 1 A 

3% a 2 B 
1% b 2 C 
3% a 3 D 
3% b 4 E 

1% c 4 F 
 

Table 2: Different damage scenarios 52-element dome 

Scenario Number of element Damage ratio 
1 27 10% 
 34 10% 

2 22 30% 
 44 30% 

3 2 30% 
 10 30% 
 30 30% 

4 9 40% 
 13 30% 

 40 30% 
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(a) (b) (c)

Figure 3. The various Position of sensors in 52-element dome structure 

 
Figure 4. Damage detection result for 52-element dome structure of the condition A 

 

 
Figure 5. Damage detection result for 52-element dome structure of the condition B 

 



F. Sarvi, S. Shojaee and P. Torkzadeh 

 

218 

 
Figure 6. Damage detection result for 52-element dome structure of the condition C 

 

 
Figure 7. Damage detection result for 52-element dome structure of the condition D 

 

 
Figure 8. Damage detection result for 52-element dome structure of the condition E 
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Figure 9. Damage detection result for 52-element dome structure of the condition F 

 

10.2 Space Structure 120- member Dome 

A 120 member- dome as shown in Figure 10 is considered here to confirm the proposed 

method. 

The section area of members of a 120-member dome is optimized under static loading 

[29] Physical model of the structure consists of 49 nodes with 117 active degrees of 

freedom. Number of the points and members are shown in Figure 10. Various conditions 

and damage pattern are given in Tables 3 and 4 respectively. 
 

Table 3: Different condition for 120-element dome 

Noise level Sensor pattern Scenario Condition 

0 a 2 A 
0 b 2 B 
0 a 4 C 

0 b 4 D 

%5 b 3 E 
%2 a 1 F 

 
Table 4: Different damage scenarios 120-element dome 

Damage ratio Number of element Scenario 
%10 18 1 
%40 51  
%30 52  
%25 111  
%5 118  
%30 16 2 
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%12 27  
%32 41  
%5 49  
%40 62 

 %25 96 
%10 117 
%25 1 3 
%30 34  
%40 42  
%5 56 

 

%10 58 
%35 65 
%25 67 
%17 77 
%9 91 
%25 6 4 
%25 22  
%40 32  
%5 34 

 

%40 35 
%30 40 
%17 91 
%12 92 
%10 99 
%11 112 
%9 119 
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Figure 10. 120-element dome structure 

 

 
 

(a) (b) 

Figure 11. The various Position of sensors in 120-element dome structure 
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Figure 12. Damage detection result for 120-element dome structure of the condition A 

 

 
Figure 13. Damage detection result for 120-element dome structure of the condition B 

 
Figure 14.Convergence diagram for 120-element dome structure of the condition A&B 
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Figure 15. Damage detection result for 120-element dome structure of the condition 

 

 
Figure 16. Damage detection result for 120-element dome structure of the condition D 

 
Figure 17.Convergence diagram for 120-element dome structure of the condition C&D 
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Figure 18. Damage detection result for 120-element dome structure of the condition E 

 

 
Figure 19. Damage detection result for 120-element dome structure of the condition F 

 

 

10.3 A 800 Element Double Layer Grid 

For more investigation, the proposed algorithm is implanted on a full-member structure for 

damage detection. Physical model of the structure is composed of 221 nodes and 555 active 

degrees of freedom. Modulus of elasticity and the weight per unit volume are respectively 

210000 Mpa and 7850 Kg/m3. 

The number of points and members are shown in Figure 20. Patterns and various 

conditions of damage are respectively given in Tables 5 and 6. In this example, two sensors 

pattern are randomly considered as shown in Figure 21. Also, two pattern loads are applied 

on the structure in 5 points of in the first pattern and one point in the second pattern. 
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Figure 20. 800-Element double layer grid 

 
Table 5: Different damage scenarios 120-element dome 

Damage ratio Number of element Scenario 
15% 12 1 
25% 35  
8% 50 

24% 94 
17% 124 
23% 202 

15% 241 

31% 245 

30% 264 

17% 293 

25% 306 

37% 377 

11% 422 

40% 455 

17% 465 
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27% 483 

33% 570 

15% 682 

8% 687 

22% 750 

26% 32 2 
16% 48  
11% 238 
40% 288 
25% 296 
32% 339 
15% 356 
31% 535 

5% 668 

12% 737 

15% 150 3 
25% 327  
27% 438 
9% 471 

32% 472 
12% 521 
30% 531 
5% 538 

17% 718 
40% 793 

40% 154 4 
11% 273  
15% 417 
31% 486 
25% 581 
8% 707 

17% 748 
 

Table 6: Different condition for 120-element dome 

Noise 

level 
Loading 

Pattern 

Sensor 

pattern Scenario Condition 

1% 1 b 1 A 
0 1 a 2 B 
0 1 a 3 C 
0 2 a 3 D 

1% 2 b 3 E 

2% 1 a 4 F 
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Figure 21. The various Position of sensors in 800-element double layer grid 
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Figure 22. Damage detection result for 800-element double layer grid of the condition A 
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Figure 23. Damage detection result for 800-element double layer grid of the condition B 

 

 
Figure 24. Damage detection result for 800-element double layer grid of the condition C 

 
Figure 25. Damage detection result for 800-element double layer grid of the condition D 
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Figure 26. Damage detection result for 800-element double layer grid of the condition E 

 

 
Figure 27. Damage detection result for 800-element double layer grid of the condition F 

 

 

11. CONCLUSION 
 

This work proposes damage identification of truss structures using the Levenberg–

Marquardt algorithm based on sensitivity analysis. Due to the high cost of data-receiving 

systems   (including installation of sensors and instruments for keeping them(, the proposed 

method can effectively detect damage with the assumption of putting limited number of 

sensors in structure and therefore it has more advantages in this respect.  

Since sensor placement is carried out randomly, the results show that the proposed 

method with different sensor placement patterns is able to detect the damage, but it should 

be noted the location of sensors is significant in terms of precision and convergence speed. 

From different patterns of sensors placement it is concluded that the quantity of damage 

with symmetrical sensors in structures is detected with more high accuracy and speed.The 
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results show that the sensitivity of the method is higher compared to the little acceleration 

change and even in big structures the gradual loading in one of the points has been sufficient 

and is able to detect the damage with precision and speed.  

To investigate and compare the performance of Levenberg-Marquardt method with other 

methods some examples were solved to detect damage in full-member discrete structures. 

The obtained numerical results are then compared with available numerical methods, and 

excellent agreements are found. 

Also the results from problem damage detection of 800-element double layer grid 

showed that the proposed method has efficiency and high precision for the damage detection 

in large scale structures and it can be used in practical issues. 
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