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ABSTRACT 

 

In this study an efficient meta-heuristic is proposed for layout optimization of truss 

structures by combining cellular automata (CA) and firefly algorithm (FA). In the proposed 

meta-heuristic, called here as cellular automata firefly algorithm (CAFA), a new equation is 

presented for position updating of fireflies based on the concept of CA. Two benchmark 

examples of truss structures are presented to illustrate the efficiency of the proposed 

algorithm. Numerical results reveal that the proposed algorithm is a powerful optimization 

technique with improved convergence rate in comparison with other existing algorithms. 
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1. INTRODUCTION  

 

Structural optimization is a critical activity that has received considerable attention in the 

last four decades. Usually, structural optimization problems involve searching for the 

minimum of the structural weight. This minimum weight design is subjected to various 

constraints on performance measures, such as stresses and displacements, and also restricted 

by practical minimum cross-sectional areas or dimensions of the structural members or 

components. Due to considering these constraints the possibility of trapping in the local 

optima will be larger. Optimum layout design of structures is one of the challenging research 

areas of the structural optimization field. In this class of optimization problems two types of 

design variables with different natures, including sizing and geometric variables, are 

involved. The layout optimization problem has been identified as a more difficult but more 
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important task than pure sizing optimization, since potential savings in material can be far 

better improved than by the latter. Most of the engineering optimization algorithms are 

based on numerical linear and nonlinear programming methods that require substantial 

gradient information and usually seek to improve the solution in the neighborhood of a 

starting point. These algorithms, however, reveal a limited approach to complicated real-

world optimization problems. If there is more than one local optimum in the problem, the 

result may depend on the selection of an initial point, and the obtained optimal solution may 

not necessarily be the global optimum [1].  

In the last years, structural optimization has been studied by using different natural 

phenomena based meta-heuristic algorithms. One of the popular meta-heuristics is firefly 

algorithm (FA) [2]. The FA is an optimization technique inspired by social behavior of 

fireflies and the phenomenon of bioluminescent communication. The FA needs much 

iteration to converge to a good solution and this increases the computational burden of the 

optimization process. On the other hand, cellular automata (CA) [3] represents simple 

mathematical idealizations of physical systems in which space and time are discrete and 

physical quantities are taken from a finite set of discrete values. Models based on CA 

provide an alternative and more general approach to physical modeling rather than an 

approximation [4]. In the present study, a computational strategy based on the concept of 

CA is proposed to modify the computational performance of the FA for layout optimization 

of truss structures. During the recent years, many researchers have tackled the layout (shape) 

optimization problem of truss structures. Kaveh and Shahrouzi [5] proposed a modified 

genetic algorithm (GA) for simultaneous size and shape optimization of structures. 

Gholizadeh [6] proposed a CA-based particle swarm optimization (PSO) algorithm for 

layout optimization of truss structures. Kaveh and Ahmadi [7] combined a supervised 

charged system search meta-heuristic with force method for implementing sizing, geometry 

and topology optimization of trusses structures. Kaveh and Mahdavi [8] employed colliding 

bodies optimization (CBO) for size and topology optimization of truss structures. In this 

study, the so called cellular automata firefly algorithm (CAFA) is proposed for solving the 

layout optimization of truss structures. In the proposed CAFA meta-heuristic, the fireflies 

are distributed on a small dimensioned grid and the artificial evolution is evolved by a new 

position updating equation. In the position updating equation instead of the more attractive 

firefly in the swarm, the more attractive firefly in the close neighborhood of each firefly is 

employed to update the position of fireflies. This new equation increases the exploitation 

ability of the algorithm and prevents quick convergence to local optima in comparison with 

its standard version.  

Two benchmark layout optimization problems of trusses are solved by the proposed 

CAFA meta-heuristic. The numerical results indicate that the computational performance of 

the proposed algorithm is better than that of the FA and some other meta-heuristics. 

 

 

2. OPTIMIZATION PROBLEM 

 

The mathematical formulation of structural optimization problems toward the design 

variables, the objective and constraint functions depend on the type of the application. 
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However, all optimization problems can be expressed in standard mathematical terms, which 

in general form can be stated as follows: 

 

 

Minimize    f(X)  

Subject to   gi(X) ≤ 0  ,   i = 1, . . . , m 
u

jj

l

j XXX    ,   j = 1, . . . , n 
 (1) 

 

where, X is the vector of design variables including size and layout (shape) variables; F(X) is 

the objective function to be minimized; gi(X) is the ith behavioral constraints; Xl
j and Xu

j are 

the lower and the upper bounds on a typical design variable Xj.  

In this study, to transform the constrained structural optimization problem into an 

unconstrained one the exterior penalty function method (EPFM) is employed. The EPFM 

transforms the basic optimization problem into an alternative formulation such that 

numerical solutions are sought by solving a sequence of unconstrained minimization 

problems. The above mentioned constrained optimization problem can be converted into an 

unconstrained problem by constructing a function of the following form: 
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where Φ , and rp are the pseudo objective function, and positive penalty parameter, 

respectively. 

 

 

3. FIREFLY ALGORITHM 

 

The FA is a population-based meta-heuristic optimization algorithm inspired by the flashing 

behavior of fireflies. Fireflies communicate, search for pray and find mates using 

bioluminescence with varied flashing patterns [9]. In order to develop the firefly algorithm, 

natural flashing characteristics of fireflies have been idealized using the following three 

rules [2]: 

a. All of the fireflies are unisex; therefore, one firefly will be attracted to other fireflies 

regardless of their sex. 

b. Attractiveness of each firefly is proportional to its brightness, thus for any two flashing 

fireflies, the less bright firefly will move towards the brighter one. The attractiveness is 

proportional to the brightness and they both decrease as their distance increases. If there 

is no brighter one than a particular firefly, it will move randomly. 

c. The brightness of a firefly is determined according to the nature of the objective function. 

The attractiveness of a firefly is determined by its brightness or light intensity which is 

obtained from the objective function of the optimization problem. However, the 

attractiveness β, which is related to the judgment of the beholder, varies with the distance 

between two fireflies. The attractiveness β can be defined by [9]: 

 



R. Kamyab Moghadas and S. Gholizadeh 

 

16 16 

2-

0e
r.   (3) 

 

where r is the distance of two fireflies, 0 is the attractiveness at r = 0, and is the light 

absorption coefficient.  

The distance between two fireflies i and j at Xi and Xj respectively, is determined using 

the following equation: 
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where xi,k is the k-th parameter of the spatial coordinate xi of the i-th firefly.  

In the firefly algorithm, the movement of a firefly i towards a more attractive (brighter) 

firefly j is determined by the following equation [9]: 
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where the second term is related to the attraction, while the third term is randomization with 

α being the randomization parameter. Also rand is a random number generator uniformly 

distributed in [0, 1]. 

In this paper, α is changed dynamically according to the following equation: 

 

t.
tmax

minmax
max





  (6) 

 

where αmax=1 and αmin=0.2. Also, tmax and t are the numbers of maximum iterations and 

present iteration, respectively. It should be noted that, various values are examined for αmax 

and αmin and the best results are obtained in the case of reported values.  

 

 

4. CELLULAR AUTOMATA 

 

Cellular automata (CA) were firstly introduced by Von Neumann [3] and subsequently 

developed by other researchers in many fields of science. Basically, CA represents simple 

mathematical idealizations of physical systems in which space and time are discrete, and 

physical quantities are taken from a finite set of discrete values. Models based on CA 

provide an alternative and more general approach to physical modeling rather than an 

approximation. The CA shows a complex behavior analogous to that associated with 

complex differential equations, but in this case complexity emerges from the interaction of 

simple entities following simple rules [10]. 

In its basic form, a cellular automaton consists of a regular uniform grid of sites or cells 

with a discrete variable in each cell which can take on a finite number of states. The state of 

the cellular automaton is then completely specified by the values )(tss ii   of the variables at 

each cell i. During time, cellular automata evolve in discrete time steps according to a 
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parallel state transition determined by a set of local rules: the variables )( 1
1


  ki

k
i tss at each 

site i at time tk+1 are updated synchronously based on the values of the variables k

nc
s  in their nc 

neighborhood at the preceding time instant tk. The neighborhood nc of a cell i is typically 

taken to be the cell itself and a set of adjacent cells within a given radius r; rinri c  . 

Thus, the dynamics of a cellular automaton can be formally represented as follows [11]: 
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i
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i c

ssθs 
, rinri c   (7) 

 

where the function θ  is the evolutionary rule of the automaton. 

One of the most important features of CA is the neighborhood structure. For updating the 

value of a cell, its own value and the values of neighboring cells should be considered. 

Configuration of the neighborhood structure is highly problem dependent and depends on 

the nature of the physical phenomenon that should be modeled. Clearly, a proper choice of 

the neighborhood plays a crucial role in determining the effectiveness of such a rule. In this 

paper, the widely used Moore neighborhood of interaction [10], by r=1, is adopted as shown 

in Fig. 1. In this figure, the Moore neighborhood of the central cell is shown by gray region. 

 

 
Figure 1. Moore neighborhood [6] 

 

 

5. CELLULAR AUTOMATA BASED FIREFLY ALGORITHM 

 

In the present paper, CA is employed to modify the performance of the FA for optimal 

layout design of truss structures. In the so CAFA meta-heuristic, fireflies are distributed on 

discrete locations of a 2D rectangular grid. The state variables associated with each cell site 

are simply the design variables of the optimization problem. In the traditional FA, position 

of fireflies in the search space is updated by applying Eq. (5). In the CAFA meta-heuristic, 

the updating process is accomplished based on a rule of the automaton. In this case, in the 

search process, the local information of the Moor neighborhood of each central site is used 

to efficiently update its position in the design space. When the swarm of fireflies is updated, 

the evolutionary rules of the automaton are repeated until one of the stopping criteria is met. 

In the CAFA meta-heuristic, the objective function of the optimization problem is employed 

to define the fitness of each design vector.  
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In the proposed CAFA meta-heuristic, a swarm of fireflies is structured on a 2D grid. In 

this case, each site contains a real-valued vector describing of a design and therefore the 

state of the cellular automaton in each site is a design vector of design variables as follows: 

 

  cinii nixxxXs 1,2,..., ,  ...  , 
T

21   (8) 

 

The proposed cellular position updating equation acts on the design variables and 

employs the information available at the central site and its immediate neighbors as follows: 
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where Xi,j is the jth firefly in immediate neighbors of the ith central cell. 

In each iteration or in each discrete time step, the proposed equation produces a new 

design at each site. 

The values of algorithmic parameters can seriously affect the performance of the CAFA 

meta-heuristic. A sensitivity analysis is performed and the results reveal that the best values 

of the parameters are as follows: αmax=1.5, αmin=0.0, and  =0.05. 

 

 

6. NUMERICAL EXAMPLES 

 

In order to investigate the computational performance of the proposed CAFA meta-heuristic, 

two examples are presented. For all examples, the swarm size and maximum number of 

iterations are 20 and 300, respectively. All of the required computer programs are coded in 

MATLAB [11] platform. 

 

6.1 15-bar Truss 

This problem has been investigated by Wu and Chow [12], Hwang and He [13], Tang et al. 

[14] and Rahami and Kaveh [15]. The fifteen-bar 2D truss is shown in Fig. 2. The 

magnitude of the vertical load is P=10 kips. The material density is 0.1 lb/in3 and the 

modulus of elasticity is 104 ksi. 

 

 
Figure 2. Fifteen-bar truss 
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In this example there are 23 design variables including two categories: Sizing variables: 

Ai, i=1,2,…, 15 and Geometry variables: x2 = x6; x3 = x7; y2; y3; y4; y6; y7; y8. Stress limitation 

for all elements is ksi 25 .  

The size variables are selected from the following set: 

D = { 0.111, 0.141, 0.174, 0.220, 0.270, 0.287, 0.347, 0.440, 0.539, 0.954, 1.081, 1.174, 

1.333, 1.488, 1.764, 2.142, 2.697, 2.800, 3.131, 3.565, 3.813, 4.805, 5.952, 6.572, 7.192, 

8.525, 9.300, 10.850, 13.330, 14.290, 17.170, 19.180} (in.2). Also side constraints for 

geometry variables are as follows:  

100 in. ≤ x2 ≤ 140 in.; 220 in. ≤ x3 ≤ 260 in.; 100 in. ≤ y2 ≤ 140 in.; 100 in. ≤ y3 ≤ 140 in.; 50 

in. ≤ y4 ≤ 90 in.; 20 in. ≤ y6 ≤ 20 in.; −20 in. ≤ y7 ≤ 20 in.; 20 in. ≤ y8 ≤ 60 in.; 

In order to investigate the efficiency of the proposed CAFA meta-heuristic, 20 

independent optimization runs are achieved and the best, worst and mean weights of 73.214 

lb, 82.148 lb and 77.634 lb are obtained. The best results obtained in this study are 

compared with those of the other works in Table 1.  

 
Table 1: Optimal layout designs of 15-bar planner truss 

Design 

variables 
Wu and Chow [12] 

Hwang and 

He [13] 

Tang et al. 

[14] 

Rahami 

et al. [15] 

Present 

work 

     FA CAFA 

A1 1.174 0.954 1.081 1.081 1.081 0.954 

A2 0.954 1.081 0.539 0.539 0.539 0.539 

A3 0.440 0.440 0.287 0.287 0.141 0.287 

A4 1.333 1.174 0.954 0.954 0.954 0.954 

A5 0.954 1.488 0.954 0.539 0.539 0.539 

A6 0.174 0.270 0.220 0.141 0.347 0.141 

A7 0.440 0.270 0.111 0.111 0.111 0.111 

A8 0.440 0.347 0.111 0.111 0.111 0.111 

A9 1.081 0.220 0.287 0.539 0.141 0.287 

A10 1.333 0.440 0.220 0.440 0.220 0.347 

A11 0.174 0.220 0.440 0.539 0.539 0.347 

A12 0.174 0.440 0.440 0.270 0.287 0.270 

A13 0.347 0.347 0.111 0.220 0.270 0.270 

A14 0.347 0.270 0.220 0.141 0.270 0.141 

A15 0.440 0.220 0.347 0.287 0.220 0.270 

x2 123.189 118.346 133.612 101.5775 126.716 130.221 

x3 231.595 225.209 234.752 227.9112 251.205 255.884 

y2 107.189 119.046 100.449 134.7986 134.609 126.885 

y3 119.175 105.086 104.738 128.2206 123.033 119.339 

y4 60.462 63.375 73.762 54.8630 67.7807 58.9431 

y6 16.728 20.0 10.067 16.4484 3.9830 -3.3529 

y7 15.565 20.0 1.339 16.4484 -1.5743 3.1871 

y8 36.645 57.722 50.402 54.8572 58.9282 59.0057 

Weight (lb) 120.52 104.573 79.820 76.6854 78.275 73.214 

Analyses - - 8000 8000 6000 6000 
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The geometry of the optimum structure is shown in Fig. 3. 

 

 
Figure 3. Optimum layout of fifteen-bar planar truss 

 

The results presented in Table 1 indicate that solution found by CAFA meta-heuristic is 

6.46%, 4.53%, 8.28%, 29.99% and 39.25% lighter than those of found by FA, Rahami et al. 

[15], Tang et al. [14], Hwang and He [13], and Wu and Chow [12], respectively all at lower 

computational cost. This means that the proposed CAFA meta-heuristic has a better 

convergence behavior in comparison with the other algorithms reported in literature.  

 

4.2 25-bar truss 

This problem has been investigated by Wu and Chow [12], Tang et al. [14] and Rahami et 

al. [15]. The twenty five-bar truss is considered as shown in Fig. 4. 

 

 
Figure 4. Twenty five-bar space truss 
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The material density is 0.1 lb/in3 and the modulus of elasticity is 104 ksi. Loading data is 

given in Table 2. 

 
Table 2: Loading data for twenty five-bar truss 

Node Fx (kips) Fy (kips) Fz (kips) 

1 1.0 -10.0 -10.0 

2 0.0 -10.0 -10.0 

3 0.5 0.0 0.0 

6 0.6 0.0 0.0 

 

There are 13 design variables including two categories as follows:  

Size variables: A1; A2 = A3 = A4 = A5; A6 = A7 = A8 = A9; A10 = A11; A12 = A13; A14 = A15 = A16 

= A17; A18 = A19 = A20 = A21; A22 = A23 = A24 = A25 

Geometry variables: x4 = x5 = -x3 = -x6; x8 = x9 = -x7 = -x10; y3 = y4 = -y5 = -y6; y7 = y8 = -y9 = 

-y10; z3 = z4 = z5 = z6 

Stress limitation for elements is ksi 40  and displacement constraint is 0.35 in. The size 

variables are selected from the following set: D={0.1, 0.2, ... , 2.6, 2.8, 3.0, 3.2, 3.4} (in.2). 

Also side constraints for geometry variables are as follows:  

20 in. ≤ x4 ≤ 60 in.; 40 in. ≤ x8 ≤ 80 in.; 40 in. ≤ y4 ≤ 80 in.; 100 in. ≤ y8 ≤ 140 in.;  

90 in. ≤ z4 ≤ 130 in.; 

In this example, 20 independent optimization runs are implemented by the proposed 

CAFA meta-heuristic and the results indicate that the best weight of 117.40 lb, the worst 

weight of 132.94 lb and the mean weight of 118.93 lb are obtained. The best results obtained 

in this study are compared with those of the others in Table 3.  

 
Table 3: Optimal layout designs of 25-bar space truss 

Design variables 
Wu and 

Chow [12] 

Tang et al. 

[14] 

Rahami et al. 

[15] 

Present work 

FA CAFA 

A1 0.1 0.1 0.1 0.1 0.1 

A2 0.2 0.1 0.1 0.1 0.1 

A3 0.1 1.1 1.1 1.1 0.9 

A4 0.2 0.1 0.1 0.1 0.1 

A5 0.3 0.1 0.1 0.1 0.1 

A6 0.1 0.2 0.1 0.1 0.1 

A7 0.2 0.2 0.2 0.2 0.1 

A8 0.9 0.7 0.8 0.8 1.0 

x4 41.07 35.47 33.0487 32.6284 36.4317 

y4 53.47 60.37 53.5663 53.8209 58.5023 

z4 124.6 129.07 129.9092 129.5824 122.8705 

x8 50.8 45.06 43.7826 43.7827 49.1742 

y8 131.48 137.04 136.8381 136.8782 136.9440 

Weight (lb) 136.20 124.94 120.11 120.15 118.81 

Analyses - 6000 8000 6000 6000 
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The best geometry of the optimum structure found by CAFA meta-heuristic during the 

layout optimization process is shown in Fig. 5. 

 

 
Figure 5. Optimum layout of 25-bar space truss  

 

The numerical results reveal that the CAFA meta-heuristic converges to a solution which 

is 1.11%, 1.08%, 4.91%, and 12.77% lighter than those of found by FA, Rahami et al. [15], 

Tang et al. [14], and Wu and Chow [12], respectively spending lower computational cost. 

Therefore it is demonstrated that the proposed CAFA meta-heuristic is of better 

computational performance in comparison with other algorithms.  

 

 

7. CONCLUSION 

 

The main aim of the present study is to propose an efficient optimization algorithm for layout 

optimization of truss structures. In the present work, FA is selected as the optimizer and its 

computational performance is improved using the concept of CA. In the original FA the 

balance between exploration and exploitation cannot be controlled. To eliminate this 

difficulty and also to reduce the number of required structural analyses during the 

optimization process, CAFA is proposed in this study. In the proposed CAFA, the fireflies 

are distributed on a small dimensioned grid and the artificial evolution is evolved by a new 

position updating equation. In which the position updating rule is defined by employing a 
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new CA-based term in the conventional equation. In the sequel, an efficient optimization 

algorithm, denoted as CAFA, is consequently proposed to achieve the difficult layout 

optimization task. Two benchmark layout optimization problems of truss structures are 

tackled by FA and CAFA meta-heuristics and the results are compared with those of other 

existing algorithms. The obtained results demonstrate the superiority of the proposed CAFA 

meta-heuristic over FA and other algorithms proposed in literature for layout optimization of 

truss structures in terms of optimal cost and spent computational cost. 

 

 

REFERENCES 

 

1. Gholizadeh S, Barzegar A, Gheyratmand Ch. Shape optimization of structures by 

modified harmony search, Int J Optim Civil Eng 2011; 1: 485-94. 

2. Yang XS. Firefly algorithms for multimodal optimization, in: Stochastic Algorithms: 

Foundations and Applications (Eds O. Watanabe and T. Zeugmann), SAGA 2009, 

Lecture Notes in Computer Science, 5792, Springer-Verlag, Berlin, 2009, pp. 169-178. 

3. Von Neumann J. Theory of Self-Reproducing Automata, A.W. Burks, (Eds.), University 

of Illinois Press, Champaign, Ill, 1966. 

4. Kamyab R, Salajegheh E. Size optimization of nonlinear scallop domes by an enhanced 

particle swarm algorithm, Int J Civil Eng 2013; 11: 77-89. 

5. Kaveh A, Shahrouzi M. Simultaneous topology and size optimization of structures by 

genetic algorithm using minimal length chromosome, Eng Comput 2006; 23: 664-74. 

6. Gholizadeh S. Optimum design of structures by an improved particle swarm algorithm, 

Comput Struct, 2013; 125: 86-99. 

7. Kaveh A, Ahmadi B. Sizing, geometry and topology optimization of trusses using force 

method and supervised charged system search, Struct Eng Mech 2014; 50: 365-82. 

8. Kaveh A, Mahdavi, VR. Colliding bodies optimization for size and topology 

optimization of truss structures, Struct Eng Mech 2015; 53: 847-65. 

9. Gandomi AH, Yang XS, Alavi AH. Mixed variable structural optimization using firefly 

algorithm, Comput Struct 2011; 89: 2325-36. 

10. Biondini F, Bontempi F, Frangopol DM, Malerba PG. Cellular automata approach to 

durability analysis of concrete structures in aggressive environments, J Struct Eng 

2004; 130: 1724-37. 

11. MATLAB, The language of technical computing, Matlab Math Works Inc, 2009. 

12. Wu SJ, Chow PT. Integrated discrete and configuration optimization of trusses using 

genetic algorithms, Comput Struct 1995; 55: 695-702. 

13. Hwang SF, He RS. A hybrid real-parameter genetic algorithm for function 

optimization, Adv Eng Infor 2006; 20: 7-21. 

14. Tang W, Tong L, Gu Y. Improved genetic algorithm for design optimization of truss 

structures with sizing, shape and topology variables, Int J Numer Methods Eng 2005; 

62: 1737-62. 

15. Rahami H, Kaveh A, Gholipour Y. Sizing, geometry and topology optimization of 

trusses via force method and genetic algorithm, Eng Struct 2008; 30: 2360-9. 

http://www.springerlink.com/content/0001-5970/223/2/

