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ABSTRACT 
 

This paper presents an improved multi-objective evolutionary algorithm (IMOEA) for the 

design of planar steel frames. By considering constraints as a new objective function, single 

objective optimization problems turned to multi objective optimization problems. To 

increase efficiency of IMOEA different Crossover and Mutation are employed. Also to 

avoid local optima dynamic interference of mutation and crossover are considered. Feasible 

particles called elites which are very helpful for better mutation and crossover considered as 

a tool to increase efficiency of proposed algorithm. The proposed evolutionary algorithm 

(IMOEA) is utilized to solve three well-known classical weight minimization problems of 

steel moment frames. In order to verify the suitability of the present method, the results of 

optimum design for planar steel frames are obtained by present study compared to other 

researches. Results indicate that, as far as the convergence, speed of the optimization process 

and quality of optimum design are concerned behavior, IMOEA is significantly superior to 

other meta-heuristic optimization algorithms with an acceptable global answer. 
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1. INTRODUCTION 
 

Generally, the optimization techniques in structural design can be categorized into two main 

fields: classical and heuristic search methods [1]. Classical optimization methods such as 

linear programming, nonlinear programming and optimality criteria often require basic 

gradient information to achieve best answer. In these methods the final results depend on the 

initial points and the number of computational operations increases as due to the increase the 

size of the structure members. The solution in these methods does not respond to the global 
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optimum necessarily. Complexity of many engineering design problems are twisted enough 

that cannot be handled with mathematical programming methods [2-4]. In comparison, 

heuristic search methods do not require the initial data as in the mathematical programming 

and have better global search abilities than the classical optimization algorithms. Therefore, 

in the last decades considerable attention has been paid to heuristic search methods [5-15]. 

The genetic algorithm (GA) is one of popular heuristic methods; it has been used to solve 

structural optimization problems by some researches such as Camp et al. [16], Pezeshk et al. 

[17], Erbatur et al. [18], Kaveh and et al. [19]. Other heuristic algorithm such as ant colony 

optimization (ACO) is used to solve structural optimization problems too [20-22]. Also 

NSGA-II is widely used for optimization such problems [22-24]. Major variety of well-

perform algorithms like genetic algorithm and NSGA-II are categorized as evolutionary 

algorithms (EA). The main advantages of EA is their simplicity to implementation to 

different problem especially structural problems. EA is randomized search technique heavily 

depended on its operators: mutation and crossover. This operators collect information from 

the previous cycles and produced new points in each iteration [25, 26].  

Despite all the advantages of EA, the optimization time for solving structural problems is 

too high. In order to make EA less time-consuming, this paper utilizes a special attitude to 

structural design constraint and transform frame single-objective optimization problem to 

multi-objective optimization problem. This strategy is capable of decreasing the number of 

analyses notably without any reduction in the possibility of finding the optimal solution; as 

consequent, it is capable of reducing the optimization time[27]. 

The proposed algorithm is tested on several well-known frames, and numerical results are 

compared to other similar studies. The fast convergence of proposed algorithm is 

demonstrate the effectiveness of the proposed method to find optimal solution. 

 

 

2. FRAME OPTIMIZATION PROBLEMS 
 

The purpose of the optimum design of steel frames is to find a design with minimum weight 

in the most studies. The optimal design of frame structures is formulated as: 

 

𝑓(𝑋) = ∑ 𝛾𝑖𝐴𝑖𝐿𝑖

𝑛

𝑖=1

 (1) 

 

where 𝑓(𝑋) is objective function (total weight of structure); 𝛾 is density of material; 𝐴 is the 

cross sectional of member; 𝐿 is the length member; i is the current member of frame and 𝑛 is 

the number of frame members. According to AISC-LRFD [28], structures are subjected to 

several design constraints. These constraints are: 

For stress constraints of each element: 

 

𝑣i
σ = |

σi

σi
α| − 1 ≤ 0            i = 1,2, … , n (2) 

 

For maximum lateral displacement: 
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𝑣∆ =
∆𝑇

𝐻
− R ≤ 0 (3) 

 

For inter-story displacements constraints (drift): 

 

vj
d = RI −

dj

hj

≤ 0           j = 1,2, … , ns (4) 

 

where σi and σi
α are the current stress and allowable stress of each member, respectively; R 

is the maximum allowable drift; ∆𝑇 is the maximum lateral displacement; H is the total 

height of the structure; dj is the inter-story drift; hj is the story height of the jth story; ns is 

the total number of stories; RI is the inter-story allowable drift; i is the current member of 

frame and n is the total frame members. According to the AISC, the allowed drift for inter-

story is given as 1 300⁄ , and the LRFD interaction formula constraints are define as: 

 

𝑣𝑖
𝐼 = 1 −

𝑃𝑢

2φ𝑐𝑃𝑛

− (
𝑀𝑢𝑥

φ𝑏𝑀𝑛𝑥

+
𝑀𝑢𝑦

φ𝑏𝑀𝑛𝑦
) ≥ 0          𝐹𝑜𝑟

𝑃𝑢

φ𝑐𝑃𝑛

< 0.2 (5) 

𝑣𝑖
𝐼 = 1 −

𝑃𝑢

φ𝑐𝑃𝑛

−
8

9
(

𝑀𝑢𝑥

φ𝑏𝑀𝑛𝑥

+
𝑀𝑢𝑦

φ𝑏𝑀𝑛𝑦
) ≥ 0        𝐹𝑜𝑟

𝑃𝑢

φ𝑐𝑃𝑛

≥ 0.2 (6) 

 

where 𝑃𝑢 is the required strength and 𝑃𝑛 is the nominal axial strength; ∅𝑐 is the resistance 

factor (for tension φ𝑐 = 0.9, for compression φ𝑐= 0.85); 𝑀𝑢𝑥 and 𝑀𝑢𝑦 are the required 

flexural strengths in the x and y directions, respectively; 𝑀𝑛𝑥 and 𝑀𝑛𝑦 are the nominal 

flexural strengths in the x and y directions (for 2d frames, 𝑀𝑢𝑦= 0); φ𝑏 is the flexural 

resistance reduction factor (φ𝑏 = 0.90). Furthermore, 𝑃𝑛 and 𝑀𝑛 are calculated with effective 

length factors and unbraced length factor according to AISC-LRFD. In this paper, the 

following approximate effective length formula is used based on Dumonteil [29], which is 

accurate within about −1.0% and +2.0% of the exact results: 

 

𝐾 = √
1.6𝐺𝐴𝐺𝐵 + 4𝐺𝐴𝐺𝐵 + 7.5

𝐺𝐴 + 𝐺𝐵 + 7.5
 ≥ 1 (7) 

 

where 𝐺𝐴 and 𝐺𝐵 refer to the stiffness ratio or the relative stiffness of a column at its two 

ends. 

 

 

3. THE IMPROVED MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM 

(IMOEA) IMPLEMENTATION 
 

A simple EA proceeds by randomly generating an initial population. The next generation is 

evolved from this initial population by crossover and mutation operators. By this 

consideration, the weak designs are removed and the strong ones are transfer to the next 
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generation. After several generations, the best individual of the population is considered as 

the final solution of the algorithm. The stochastic nature of the method and considering a 

population of design points in each generation usually leads to the global optimum. The full 

details of the method can be found in the literature [27, 30]. Up to now standard EA and its 

improved versions have been extensively employed by researchers to efficiently tackle the 

different problems in the area of structural engineering [25, 31, 32]. 

 
 

3.1 Basic definitions for transforming single-objective problem to multi objective problem 

Before explaining the method introduced in this paper, several basic concepts that have been 

used as below. The general form of the single-objective optimization problem with equality 

and inequality constraints is shown in (8): 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑋 ) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:      {

ℎ𝑖(𝑋)  =  0,             𝑖 = 1, 2, . . . , 𝑚1

𝑔𝑗(𝑋) ≤  0,              𝑗 = 1, 2, . . . , 𝑚2

𝐿𝑘 ≤ 𝑥𝑘 ≤ 𝑈𝑘 ,         𝑘 = 1,2, … 𝑚3

 
(8) 

 

where 𝑋 is n-dimensional vector of design variables and 𝑓(𝑋 ) is the objective function 

which in this particular case minimization of 𝑓(𝑋 ) is the objective of optimization; 𝑔𝑗(𝑋) 

and ℎ𝑖(𝑋) are constraints of optimization problem and also known as inequality and equality 

constraints, respectively; 𝐿𝑘 and 𝑈𝑘 are lower band upper band of each variables, 

respectively; m1 𝑎𝑛𝑑 m2 are the number of equality and inequality constraints[26]. 

To reduce the complexity for solving single-objective problems, due to increase the 

accuracy and speed of solving such problems simultaneously, following equation for 

transforming constraints to objectives are considered. 

For equal constraints: 

 

𝑣1𝑖(𝑋) = 𝑚𝑎𝑥(ℎ𝑖(𝑋) − 𝜎, 0)   𝑖 = 1,2,3 … , 𝑚1 (9) 

 

And for unequal constraints: 

 

𝑣2𝑖(𝑋) = 𝑚𝑎𝑥(𝑔𝑖(𝑋), 0)   𝑖 = 1,2,3 … , 𝑚2 (10) 

 

Finally, the objective function derived from the constraints is the sum of above-

mentioned objectives: 

 

𝑣(𝑋) =  ∑ 𝑣1𝑖(𝑋)

𝑚1

1

+ ∑ 𝑣2𝑖(𝑋)

𝑚2

1

 (11) 

 

where σ is a small positive value used for equal constraints in order to convert them to 

unequal constraints and 𝑣(𝑋) is the violation function (second objective function). Now, any 

constrained single-objective problem can easily turned into an unconstrained bi-objective 

optimization problem [26]. 
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𝐹(𝑋) = (𝑓(𝑋), 𝑣(𝑋)) (12) 

 

Minimum value of 𝑓(𝑋) versus 𝑣(𝑋) can be depict as Fig. 1 and the curve called Pareto 

front. By explained definitions, the best answer will be in the possible minimum of 

violations (without any violation (𝑣(𝑥) = 0)), which is the global answer of optimization 

problem. While the other solutions whose value of their second objective function 

(constraint) is not equal to zero (definitely a positive number due to above definition 

(𝑣(𝑥) > 0)), has violated the initial constraints of the main problem and are not in feasible 

space and also are not qualified to be an acceptable answer to the problem. Thus, the speed 

of this algorithm is guaranteed by limiting the search space, due to removing many mislead 

particles in the search space and also local optimums which can mislead the optimization 

process to reach the global optimum. 

 

 
Figure 1. Global optimum position in this method 

 

3.2 Mutation operator 

The mutation operator has always been one of the most influential operators in evolutionary 

algorithms [33, 34]. In the mutation operation, certain digits of the chromosomes are altered 

randomly. For continuous problems, the use of more complicated mutations is more 

prevalent. The general form of the mutation operator in continuous problems is in the form 

of the Equation 13 given: 

 

𝑥𝑖
′ = 𝑥𝑖 + (𝑢𝑖 − 𝑙𝑖)𝛿�̅� (13) 

 

where 𝑥𝑖
′ is the mutated gene (child); 𝑥𝑖 is the primary gene (parent); 𝑢𝑖 is the upper limit; 𝑙𝑖 

is lower limit and 𝛿�̅� is the distribution function. In this study, normal mutation[35] which 

distributes a set of random numbers normally is selected as mutation of algorithm. 

 

3.3 Crossover operator 

Another influential operator in the evolutionary algorithms is the crossover operator. In the 

crossover operation, two members of the population are randomly selected, as parents, and 

two new offsprings are produced by exchanging a chromosome of parents’ string [36]. Mask 

crossover is chosen crossover for this study, produce a completely randomized gene as the 

size of parents' genes. In case of having a value of 0 in the randomized gene, the 
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corresponding strand should be found in the first parent and poured into a new gene. In case 

of having the value of 1 in a randomized gene, corresponding value of the second gene will 

assign to the new gene. The schematic of mask crossover is shown in Fig. 2. 

 

 
Figure 2. Schematic of mask crossover 

 

 

3.4. Interference of operators 

As mentioned in other studies, evolutionary algorithms are used to find the optimal solution 

by mutation and crossover operator functions [37]. Now, the impact percentage of these two 

operators is very important for the production of new generations for a reasonable moving 

toward the global optimum. Generally, in the initial cycles, the crossover operator makes a 

better convergence of the algorithm, and in the final cycles, the Mutation Operator prevents 

particles from being captured at local optima. Therefore, in order to consider this feature in 

the proposed algorithm and also to avoid additional calculations, the impact coefficients of 

these two operators are considered dynamically and it is related to momentary cycle of the 

procedure. Crossover operator linearly reduces and mutation operator is linearly increases as 

new generations being produced. 

 

3.5 Importance of feasible particles  

Crossover and mutation operators use particles of each cycle to search the solution space to 

achieve optimal solution in next generation. If they operate among particles with violations, 

there would be very little chance of finding a particle which is in the feasible area. So due to 

the specific performance of the proposed algorithm and also that many points can be in the 

infeasible area, a certain percentage of the solution in feasible area (elites) of each cycle are 

allocated. Now crossover and mutation can also select elites which are definitely in the 

feasible area and combine them with other particles (whole search space), will bring a 

convenient probability of finding global answer. There is also a special way to prioritize 

these particles. Since none of these particles has constraints violation (𝑣(𝑥) = 0), these 

particles are arranged according to the value of the main objective function of the problem 

(𝑓(𝑥)) in an ascending order, which is clear that the smallest value of 𝑓(𝑥) of these particles 

is the optimal answer of the problem, and then the rest of the particles with higher 𝑓(𝑥) are 

arranged. It should be noted that if the number of existed particles without a violation is less 

than a selected specified percentage set at the beginning of optimization, the algorithm fills 

the population of itself with other particles without violation, and if the present particles 

with no violation is greater than is needed, the algorithm chooses the particle as much as the 

elite number, and does not consider the rest. 
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4. DESIGN EXAMPLES 
 

In this section, three benchmark frame structures are optimized using the proposed method 

and results were compared with previous studies to demonstrate the validity of the proposed 

algorithm. Population for each problem is different but for all problems, maximum and 

minimum of operators (crossover and mutation) percentage are 0.9 and 0.3, respectively. 

Also in all problems, 0.3 of best feasible point (elites) reserved for operators calculation of 

next generation.  

 

4.1 Two-bay, three-story planar frame 

The first benchmark problem is a two-bay, three-story frame subject to a single-load case as 

shown in Fig. 3. This frame was optimized according to the AISC–LRFD specification and 

the values of the uniform and the point loads in Fig. 3. The modulus of elasticity of steel is 

taken as 𝐸 =  200 𝐺𝑃𝑎 (29,000 𝑘𝑠𝑖), the yield stress is 𝐹𝑦 = 248.2 𝑀𝑃𝑎 (36 𝑘𝑠𝑖) and the 

material unit weight of 𝛾 =  7861 
𝑘𝑔

𝑚3⁄  (0.284 𝑙𝑏
𝑖𝑛3⁄ ) were used. The unbraced length 

factor for each beam member was specified to be 0.167. The beam group section should be 

chosen from the entire W-shapes of AISC standard list; however, the column group section 

is limited to W10 sections[17, 20]. Population for each cycle is 40 individuals. 

 

 
Figure 3. Two-bay, three-story planar frame 

 

Fig. 4 shows the convergence history for the IMOEA. The optimum design of the frame 

is obtained after 250 analyses and reached the global optimum of this problem.  
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Figure 4. Convergence history for two-bay, three-story planar frame 

 

Optimization results are compared with the literature as listed in Table 1. IMOEA 

acquired the answer whit lowest analyses among other algorithms. 
 

Table 1: Statistical results of two-bay, three-story planar frame 

AISC W-shapes 
Element Group no. 

IMOEA DDHS[38] ACO[20] GA[17] Element kind 

W24X62 W24X62 W24X62 W24X62 Beams 1 

W10X60 W10X60 W10X60 W10X60 Columns 2 

83.7759 83.7759 83.7759 83.7759  Weight(𝑘𝑁) 

250 270 3000 1800  Number of Analyses 

 

In summary, the proposed IMOEA algorithm seems to be the most efficient optimizer 

overall in terms of structural weight and computational cost of the optimization process in 

this specific problem. 

 
 

4.2 One-bay ten-story frame design 

Fig. 5 shows the configuration and applied loads of 1-bay 10-story frame structure 

consisting of 30 members. Many researchers tested this example [17, 21, 39]. The beam 

element groups are chosen from all 267 W-shaped sections of the AISC standard list, while 

the column element groups are limited to W12 and W14 sections (66 W-shapes). The frame 

was designed according to the AISC-LRFD specifications and uses inter-story drift 

constraints: inter story drift < story height/300. The modulus of elasticity of the material E is 

200 𝐺𝑃𝑎 and the yield stress 𝑓𝑦 is 248.2 𝑀𝑃𝑎. Same beam section to be used for three 

consecutive stories, beginning at the foundation, and that the same column section is used 

every two consecutive stories. The element grouping resulted in four beam sections and five 

column sections for a total of nine design variables and is shown in Fig. 5. 100 individuals 

are selected as Population of each cycle. 

Fig. 6 shows the convergence history for optimization of one-bay ten-story planar frame 

problem by IMOEA. The optimum design of the frame is obtained 277.9 KN after 2200 

analyses. Only IACO found better solution than IMOEA but there is no information about 

needed analyses. 
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Figure 5. One-bay ten-story planar frame 

 

 
Figure 6. Convergence history for one-bay ten-story planar frame 

 

Optimization results are compared with the literature as listed in Table 2. IMOEA 

acquired the convenient answer whit lowest analyses among other algorithms. 
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Table 2: Statistical results of one-bay ten-story planar frame 

AISC W-shapes 
Element Group no. 

IMOEA IACO[4] ACO[20] GA[17] Element kind 

W30X124 W33X118 W30X108 W33X118 Beam 1-3S 1 

W24X103 W30X90 W30X90 W30X90 Beam 4-6S 2 

W21X93 W24X76 W27X84 W27X84 Beam 7-9S 3 

W18X46 W14X30 W21X44 W24X55 Beam 10S 4 

W30X211 W14X233 W14X233 W14X233 Column 1-2S 5 

W36X160 W14X176 W14X176 W14X176 Column 3-4S 6 

W21X122 W14X145 W14X145 W14X159 Column 5-6S 7 

W30X90 W14X90 W14X99 W14X99 Column 7-8S 8 

W21X62 W12X65 W12X65 W12X79 Column 9-10S 9 

277.9401 274.99 278.48 289.72  Weight(kN) 

2200 n/a 8300 3000  Number of Analyses 

 

4.3 Three-bay fifteen-story frame design 

The topology and the service loading conditions for a three-bay fifteen-story frame 

consisting of 105 members are shown in Fig. 7. Displacement and AISC combined strength 

constraints were included as optimization constraints. Elasticity of the material (E) and yield 

stress (𝑓𝑦) is similar to the previous problem. The beam and column element groups are 

chosen from all 267 W-shaped sections of the AISC standard list. The element grouping 

resulted in ten column sections and all beam are in same grouping. Details of grouping is 

shown in Fig. 7. 150 individuals are selected as Population of each cycle. 

 

 
Figure 7. Convergence history for three-bay fifteen-story planar frame 
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Fig. 8 shows the convergence history for the IMOEA. The optimum design of the frame 

is obtained after 6500 analyses and reached the global optimum of 425.7 KN for this 

problem. Only CBO found better solution than IMOEA but there is no information about 

needed analyses. 
 

 
Figure 7. Convergence history for one-bay ten-story planar frame 

 

Optimization results are compared with the literature as listed in Table 3. IMOEA 

acquired the convenient answer whit lowest analyses among other algorithms. 

 
Table 3: Statistical results of three-bay fifteen-story planar frame 

 

 

5. CONCLUSION 
 

Evolutionary algorithms are generic population-based metaheuristic optimization algorithm. 

It is stochastic search technique uses mechanisms inspired by biological evolution, such 

as mutation and crossover, which is easy to implementation to optimization problems. 

AISC W-shapes 
Element Group no. 

IMOEA HPSACO[40] CBO[41] PSO[40] Element kind 
W33X118 W21X111 W24X104 W33X118 Ex.Column 1-3S 1 
W36X160 W18X158 W40X167 W33X263 In.Column 1-3S 2 
W18X86 W10X88 W27X84 W24X76 Ex.Column 4-6S 3 

W14X120 W30X116 W27X114 W36X256 In.Column 4-6S 4 

W21X68 W21X83 W21X68 W21X73 Ex.Column 7-9S 5 

W30X90 W24X103 W30X90 W18X86 In.Column 7-9S 6 

W10X60 W21X55 W8X48 W18X65 Ex.Column 10-12S 7 

W24X68 W27X114 W21X68 W21X68 In.Column 10-12S 8 

W10X33 W10X33 W14X34 W18X60 Ex.Column 13-15S 9 
W12X40 W18X46 W8X35 W18X65 In.Column 13-15S 10 
W21X50 W21X44 W21X50 W21X44 Beams 11 
425.7233 426.5 416.5 496.39  Weight(kN) 

6500 6800 n/a n/a  Number of Analyses 

https://en.wikipedia.org/wiki/Biological_evolution
https://en.wikipedia.org/wiki/Mutation
https://en.wikipedia.org/wiki/Natural_selection
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Despite all these advantages, optimization process for solving frame structures still very 

time-consuming. 

In this paper, in order to improve the convergence speed and searching ability of the EAs, 

the implementation of an efficient converting constraint to objective function based on 

specific definition is introduced. Also In this method, mutation and crossover operators are 

chosen so that, the IMOEA shows better performance. Dynamization of crossover and 

mutation operators’ percentage impact in population of every cycle and considering elite 

particles on this operators improved algorithm capability to find better solutions. 

The proposed algorithm was tested on 3 benchmark frame problem. In all presented 

problems, IMOEA shows better performance against single-objective optimization 

algorithm in convergence and speed of providing optimal solution. IMOEA also present 

convenient global optimum, but there is a little weakness against powerful optimization 

algorithm. This algorithm by narrow down search space could be recommended in some of 

the problems where there is no limit in the search space. Obviously, implementation of the 

main idea of algorithm may leads to better algorithm while the result of IMOEA shows a 

great performance and could be tested on many other optimization challenges. 
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