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ABSTRACT 
 

Concrete is the second most consumed material after water and the most widely used 

construction material in the world. The compressive strength of concrete is one of its most 

important mechanical properties, which highly depends on its mix design. The present study 

uses the intelligent methods with instance-based learning ability to predict the compressive 

strength of concrete. To achieve this objective, first, a set of data pertaining to concrete mix 

designs containing fly ash was collected. Then, mix design parameters were used as the 

inputs of the artificial neural network (ANN), support vector machine (SVM), and adaptive 

neuro-fuzzy inference system (ANFIS) developed for predicting the compressive strength. 

In all these models, prediction accuracy largely depends on the parameters of the learning 

model. Hence, the particle swarm optimization (PSO) algorithm, as a powerful population-

based algorithm for solving continuous and discrete optimization problems, was used to 

determine the optimal values of algorithm parameters. The hybrid models were trained and 

tested with 426 experimental data and their results were compared by statistical criteria. 

Comparing the results of the developed models with the real values showed that the ANFIS-

PSO hybrid model has the best performance and accuracy among the assessed methods. 
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1. INTRODUCTION 
 

Concrete plays a primary role in construction materials. Compressive strength is a property 
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of concrete that nearly always is of concern [1]. The properties such as compressive strength 

of concrete depend on multiple parameters including water-cement ratio, the quantity of fine 

and coarse aggregates, additives, etc. The high number and nature of these parameters make 

concrete strength very difficult to predict. In this regard, a general rule to describe this 

complex system has not been provided yet and the currently available relationships are 

mostly empirical. Traditional methods, which are based on a generalization of past 

experiences, are not accurate enough to give satisfactory relationships for this purpose [2]. 

Therefore, fast and reasonably accurate prediction of concrete strength can benefit both 

design and quality control procedures [3]. Prediction of concrete strength before actual 

construction enables the engineers to improve upon the existing planning and quality control 

efforts. Also, this can lead to significant time and cost savings in the construction of large 

concrete structures. One method to predict the compressive strength of concrete is the use of 

intelligent methods with instance-based learning ability [2]. The main purpose of such 

modeling systems is to use a large set of experimental data for different concrete mixtures to 

reflect the nature of certain physical properties of concrete such as its compressive strength 

[4]. This prediction allows the designer to modify the mix design so as to achieve outcomes 

such as improved quality, rapid construction, or lower costs [3]. 

Data mining is the process of analyzing data from different perspectives and summarizing 

them into useful information (Fig. 1). Technically, data mining is the process of finding 

relationships or patterns between dozens of data items in a large database [5]. The process of 

knowledge discovery in databases consists of three steps: pre-processing, data mining, and 

post-processing. In the data mining process, an algorithm is used to detect patterns in the data. 

Generally, data mining techniques operate with a set of training examples and a set of test 

cases. The purpose of training examples is to train the algorithm for its target task and the 

purpose of test cases is to evaluate its performance. The purpose of the training process is to 

readjust the algorithm parameters so as to optimize the results. Eventually, validity and 

accuracy of the algorithm can be assessed with various error-based criteria. After validation, 

the algorithm can be used as a model to predict output variables [2]. 

 

 
Figure 1. Data mining as a step in the process of knowledge discovery [6] 

 

Review of literature shows that researchers who sought to predict the 28-day compressive 

strength of concrete with different mix designs have used different data mining techniques 
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such as artificial neural networks (ANNs), support vector machines (SVMs), and decision 

trees for this purpose [7-9]. Zain and Abd [10] used multiple nonlinear regression to predict 

the compressive strength of high-performance concrete. They presented a multivariable 

regression equation for forecasting the strength of high-performance concrete and stated that 

the proposed model can predict the compressive strength of concrete at different ages with a 

high correlation coefficient. Saridemir [11] used the results of different tests reported in the 

literature to develop an ANN for predicting the compressive strength of mortars containing 

metakaolin with different mix designs and curing time. Atici [12] used multiple regression 

and ANN techniques to estimate the compressive strength of concrete containing different 

quantities of blast furnace slag and fly ash. Chou et al. [4] proposed a hybrid method 

composed of hierarchical classification and regression (HCR) techniques for estimating the 

compressive strength of high-performance concrete (HPC). Madandoust et al. [13] used the 

adaptive neuro-fuzzy inference system (ANFIS) and GMDH ANNs to predict the 

compressive strength of concrete based on cylindrical specimens. They reported that both 

ANFIS and GMDH neural network have a relatively good potential for modeling and 

prediction based on experimental data, but overall ANFIS can provide better predictions. 

Chou et al. [14] used basic learning methods including multilayer perceptron (MLP), SVM, 

regression and classification trees, and linear regression as the components of hybrid 

models, and showed that the combined use of learning techniques is better than using them 

alone. Nikoo et al. [15] used self-organizing (SOFM) networks to predict the compressive 

strength of concrete based on 173 different specimens. Yuan et al. [16] reported that 

conventional regression models that predict the concrete strength do not provide accurate 

results, and then proposed two genetic-based algorithms and ANFIS models to deal with this 

situation. Their results showed that ANFIS model, which is a combination of ANN and 

fuzzy logic, has a greater ability to predict the 28-day compressive strength of concrete. 

In this paper, three intelligent methods including ANN, SVM, and ANFIS were 

optimized using particle swarm optimization (PSO) algorithm. The resulting hybrid models 

were used to predict the compressive strength of concrete based on experimental data. 

 

 

2 MATERIALS AND METHODS 
 

In this section, methods of modeling including ANN, SVR, and ANFIS are briefly 

discussed. Moreover, the methodology of the optimization (PSO) is presented. In addition, 

this section is devoted to explaining the required data for training and testing of proposed 

models. 

 

2.1 Artificial neural networks (ANN) 

ANN is an information processing system inspired by functional characteristics of biological 

neural networks. ANNs can be counted as generalized mathematical models of the human 

brain or neural biology. The ANN does not really solve the problem in a strictly 

mathematical sense, but it demonstrates information processing characteristics that gives an 

approximate solution to a given problem [17]. These networks are constructed based on the 

following assumptions: 

1- Information processing is done in a number of basic elements called neurons. 2- 
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Signals between neurons are transmitted over communications links. 3- Each link has a 

weight, which (in a normal ANN) is the factor by which transmitted signal must be 

multiplied. 4- Each neuron applies a usually nonlinear activation function to input (the sum 

of weighted input signals) to determine the output signal. Neural networks are characterized 

by (1) the pattern of communication between neurons (called architecture), (2) how the 

weights of links are calculated (called training or algorithm), and (3) the activation function. 

ANN models are particularly useful for simulating the processes for which there is no exact 

knowledge or definition. Another characteristic of these models that distinguish them from 

their rivals is their lower sensitivity to the presence of an error in inputs, which can be 

attributed to the extensive processing of distributed information. In these systems, complex 

functions are carried out in a highly parallel structure that replaces the idea of putting a 

heavy computation load on a single fast computing unit with the idea of using a large 

number of simple computing units performing a common task. This division of labor has 

another positive outcome; since many neurons are involved simultaneously, the contribution 

of a single neuron is not particularly important, so an error or failure in one neuron has not 

much effect on other computing units or overall outcome [18, 19]. 

A typical ANN architecture consists of three or more layers: one input layer, one output 

layer, and one or several hidden layers, whose neurons are connected by weighted links. 

This architecture also contains a bias that is connected (through weighted links) to the output 

and hidden neurons. The number of neurons in each layer varies with application and design. 

Fig. 2 shows a schematic diagram of a neural network [4]. Over the years in all areas of civil 

engineering were undertaken different studies addressing various problems using ANNs 

with varying degrees of success [20, 21]. 

 

 
Figure 2. Schematic view of a neural network [1] 

 

2.2 Support vector machine (SVM) 

Introduced in 1995 by Vapnik, SVM is a supervised learning model in data analysis for 

classification (SVC) and regression problems (SVR) [22]. SVM is, in fact, a linear learning 

method for finding the optimal hyperplane separating two classes. As a supervised 

classification method, SVM seeks to maximize the distance to the nearest training point 

from any class (that distance is called margin) in order to optimize the 

generalization/classification performance on test data. In SVM, the solution is based only on 

those training data that are positioned on the margin’s boundary. These points, which are 
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called the support vectors, are shown in Fig. 3a. As presented in Fig. 3b, when the classes 

cannot be separated linearly, the space of input data must be transformed to a higher-

dimension to allow the linear SVM formulation to be properly utilized. This transformation 

is often carried out using a kernel function (h). This function allows determining a nonlinear 

decision boundary, which is linear in higher-dimensional space, without the need to obtain 

the parameters of an optimal hyperplane in that higher-dimensional space. Thus, the solution 

can be written as the weighted sum of values of the kernel function employed in the support 

vectors [23]. 

 

 
Figure 3. Geometric principle of the SVM algorithm. (a) Linear SVM in a separable 

classification problem. (b) Nonlinear SVM [23] 

 

Let the training samples be denoted as XY = {(x, y)|( 𝑋1 , 𝑌1),. . ., (𝑋𝑛𝑑 , 𝑌𝑛𝑑)}, where nd 

is the number of training samples. In linear SVR, the relation between input variable 𝑥𝑘  and 

the predicted variable  𝑦
∧
𝑘
 can be described by the linear function f(x) taking the form of: 

 

 𝑦
∧
𝑘
= 𝑓(𝑥𝑘   ) =  〈𝑤 , 𝑥𝑘   〉 + 𝑏 (1) 

 

where 〈. , . 〉denotes the dot product, w and b are weight vector and bias vector, 

respectively. The aim is to find a pair of unknown vectors of (w, b) which minimizes the 

prediction error for training samples and has at most 𝜀 deviation from actual target 𝑦𝑘. The 

latter implies that there would be no penalty during optimization for the pairs when |𝑦𝑘   −
𝑓(𝑥)| ≤ 𝜀 and is defined by the 𝜀-intensive loss function, 𝒍𝜺, which can be expressed as 

follows [24]: 

 

𝑙𝜀 = |𝑦 − 𝑓(𝑥)|𝜀 = max{0, |𝑦 − 𝑓(𝑥)| − 𝜀}. (2) 

 

One way to ensure that the minimal complexity risk would be obtained, in order to have 

optimal SRM, is to minimize the norm of w, ‖𝑤‖2 = 〈𝑤,𝑤〉. Thus, in mathematical terms, 

the constrained regression problem can be written as a convex optimization problem as 

follows: 

 

 𝑚𝑖𝑛𝑤,𝑏,𝜉𝑘,𝜉𝑘∗   

1

2
  ‖𝑤‖2 + 𝐶∑(𝜉𝑘 + 𝜉𝑘

∗

𝑛𝑑

𝑘=1

), (3) 
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𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {

𝑦𝑘 − 〈𝑤 , 𝑥𝑘〉  − 𝑏 ≤  𝜀 + 𝜉𝑘   
〈𝑤 , 𝑥𝑘〉 + 𝑏 − 𝑦𝑘 ≤   𝜀 + 𝜉𝑘

∗ 

𝜉𝑘  , 𝜉𝑘
∗ ≥ 0

 (4) 

 

where 𝜉𝑘𝑎𝑛𝑑 𝜉𝑘
∗  are slack variables. In Eq. (3), the constant regularization parameter C≥ 0 

determines the trade-off between the complexity of function and the deviation from the 

tolerable error 𝜀 chosen in prior. The problem, represented in Eq. (3) and (4), is a convex 

quadratic programming optimization which can be converted to a Lagrange function by 

introducing a dual set of positive Lagrange multiplier variables. This Lagrange function 

could be solved by maximizing its dual optimization problem. The final solution of the 

optimization problem is given by: 

 

W =∑(𝛼𝑘

𝑛𝑑

𝑘=1

− 𝛼𝑘
∗)𝑥𝑘

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑦

∧
𝑛𝑒𝑤

= 𝑓(𝑥𝑛𝑒𝑤) =∑(𝛼𝑘

𝑛𝑑

𝑘=1

− 𝛼𝑘
∗)〈𝑥𝑘  , 𝑥𝑛𝑒𝑤〉 + 𝑏 , (5) 

 

where 𝛼𝑘 ≥ 0  𝑎𝑛𝑑 𝛼𝑘
∗  ≥ are Lagrange multipliers. As seen in Eq. (5), w can be completely 

described as a linear combination of the training vectors and the Lagrange multipliers. The 

samples lie inside the 𝜀 -intensive tube make both Lagrange multipliers zero, and w actually 

is represented by only some of training vectors, called support vectors (SVs), which lie 

outside the 𝜀-intensive tube. Thus, the complexity of the solution is not dependant on the 

dimensionality of the problem whereas SVs define the complexity of the function. 

For enriching SVR algorithm to deal with the models with complex non-linear relation 

between input and output domains, one can implement some pre-processing procedures of 

training patterns. This can be done by mapping input vectors into a higher-dimensional 

feature space by the means of kernel functions, which yields the non-linear SVR for the 

kernel function of k〈. , . 〉. Its solution is given by  

 

 𝑦
∧
𝑛𝑒𝑤

= 𝑓(𝑥𝑛𝑒𝑤) =∑(𝛼𝑘

𝑛𝑑

𝑘=1

− 𝛼𝑘
∗)𝑘〈𝑥𝑘 , 𝑥𝑛𝑒𝑤〉 + 𝑏 . (6) 

 

Kernel functions map the input space into the feature space by giving the weights of 

nearby data points in making an estimate. Therefore, they are important to control the 

complexity of the final solution. One may choose any arbitrary kernel functions, e.g., linear 

kernel function 𝑘〈𝑥𝑡  , 𝑥𝑘〉 = 〈𝑥𝑡  , 𝑥𝑘〉, polynomial kernel function 𝑘〈𝑥𝑡 , 𝑥𝑘〉 = (〈𝑥𝑡 , 𝑥𝑘〉 +
1)𝑑 , 𝑑 > 0 , radial basis function (RBF) 𝑘〈𝑥𝑡  , 𝑥𝑘〉 =  exp (−𝑦‖𝑥𝑡  , 𝑥𝑘‖

2) , 𝑦 > 0 , etc. In 

highly non-linear spaces, RBF kernel usually yields more promising results in comparison 

with other mentioned kernels [25]. Consequently, we use only RBF kernel functions in this 

paper. 

 

2.3 Adaptive network-based fuzzy inference system (ANFIS) 

Introduced by Jang, ANFIS is a well-known and popular method for combined use of fuzzy 

inference system and ANN learning power for modeling of complex phenomena [26]. Fuzzy 
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inference system is a system of structured knowledge in which each fuzzy rule describes the 

system’s behavior in a locality. The inability of this system to adapt to changes in external 

environment has led to the incorporation of learning concept of neural networks into this 

system, which has resulted in the development of the ANFIS. Accordingly, ANFIS 

combines the learning capability of a neural network with inference capabilities provided by 

fuzzy logic [16]. The basic learning rule of ANFIS is the back-propagation gradient descent, 

which computes the signal error from the last layer (the output node) back toward the first 

layer (the input node). This learning rule is exactly like the back-propagation learning rule 

commonly used in feedforward neural networks [27]. Recent ANFIS designs have utilized a 

fast learning method called hybrid learning which is based on combined use of the gradient 

descent and the least squares method for finding a suitable set of antecedent and consequent 

parameters [9]. The architecture of ANFIS with two input variables is shown in Fig. 4. Also, 

the fuzzy-reasoning mechanism is illustrated as follows: 

 

 
Figure 4. Architecture of ANFIS and Fuzzy-reasoning scheme of ANFIS [16] 

 

𝑅𝑢𝑙𝑒1: 𝐼𝐹 𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1, 𝑇𝐻𝐸𝑁 𝑓1 = 𝑝1 + 𝑞1 + 𝑟1 
𝑅𝑢𝑙𝑒2: 𝐼𝐹 𝑥 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2, 𝑇𝐻𝐸𝑁 𝑓2 = 𝑝2 + 𝑞2 + 𝑟2 

The function of each layer is described subsequently: 

Layer 1 

The first layer of this architecture is the fuzzy layer. Each node of this layer makes the 

membership grad of a fuzzy set. Every node in this layer is an adaptive node with a node 

function.  

 

𝑂𝑖
1 = 𝜇𝐴𝑖(𝑥) (7) 
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where x is the input to node I, and 𝐴𝑖 is the linguistic label associated with this node 

function. Premise parameters change the shape of the membership function. 

Layer 2 

Every node in this layer is a circle node labeled , representing the firing strength of 

each rule, which multiplies the incoming signals and sends the product out. i.e. -norm 

operation: 

 

𝑂𝑖
2 = 𝜇𝐴𝑖(𝑥)  × 𝜇𝐵𝑖(𝑦) ,       𝑖 = 1,2 (8) 

 

Layer 3 

Every node in this layer is a circle node labeled N, representing the normalized firing 

strength of each rule. The 𝑖th node calculated the ratio of the ith rule’s firing weight to the 

sum of all rule’s firing weights: 

 

𝑂𝑖
3  =  𝑤𝑖  =

𝑤𝑖
𝑤1 +𝑤2

 , 𝑖 = 1,2 (9) 

 

The outputs of this layer are called normalized firing strengths. 

Layer 4 

Every node in this layer is an adaptive node with a node function, indicating the 

contribution of the 𝑖th rule towards the overall output. 

 

𝑂𝑖
4  =  𝑤𝑖𝑓𝑖 = 𝑤𝑖(𝑃𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖), 𝑖 = 1,2 (10) 

 

Where 𝑤𝑖 is the output of layer 3, and {𝑃𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖}  is the parameter set. 

Layer 5 

The signal node in this layer is a circle node labeled ∑, indicating the overall output as 

the summation of all incoming signals calculated, i.e. 

 

𝑂𝑖
5 = ∑ 𝑤𝑖𝑓𝑖   =

∑ 𝑤𝑖𝑓𝑖   𝑖

∑ 𝑤𝑖𝑖
𝑖

 (11) 

 

There were five layers in this model, including input, input membership function, rule, 

output membership function and output. 

 

2.4 Particle swarm optimization (PSO) 

First introduced by Eberhart and Kennedy, PSO is an optimization tool inspired by the 

behavior of a swarm of birds and other social animals [28]. PSO is a swarm intelligence 

algorithm for solving numerical optimization problems, which has become very popular 

because of its effectiveness in science and engineering applications. Like genetic algorithm, 

PSO operation starts with a randomly initialized population, which is updated through a 

search procedure aimed at determining a better solution. In PSO, each bird (particle) moves 

at a certain pace based on a velocity vector. The velocity vector of each bird (particle) is 

governed and updated by two behavioral variables: memory (cognitive behavior) and current 
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perception (social behavior). After sufficient time (iterations), birds (particles) can be 

expected to swarm toward the locations where their needs are met at an optimum level 

(optimum solutions). 

The aforementioned behaviors, fundamentals of PSO, are formularized as follows: 

 

𝑣𝑖(𝑗 + 1) = 𝑤(𝑗)𝑣𝑖(𝑗) + 𝜑1(𝑗)(𝑝𝑏𝑒𝑠𝑡𝑖(𝑗) − 𝑥𝑖(𝑗)) + 𝜑2(𝑗)(𝑔𝑏𝑒𝑠𝑡𝑖(𝑗) − 𝑥𝑖(𝑗)) (12) 

𝜑1(𝑗) = 𝐶1 𝑟1(𝑗), 𝜑2(𝑗) = 𝐶2 𝑟2(𝑗) (13) 

𝑥𝑖(𝑗 + 1) = 𝑥𝑖(𝑗) + 𝑣𝑖(𝑗 + 1) (14) 

 

where 𝑖 denotes particle index; j represents iteration index; 𝑥𝑖 indicates particle position. 

Corresponding particle velocity is represented by 𝑣𝑖; 𝑝𝑏𝑒𝑠𝑡𝑖 is its own previous best 

position; gbest is the previous best position of the entire swarm; and χ is a parameter called 

constriction coefficient that handles magnitude of the velocity. In Eq. (12), the second term 

on the right-hand side is a cognitive term and the third is a social term. 𝐶1 and 𝐶2 are, 

respectively, cognitive and social acceleration constants. 𝑟1 and 𝑟2 are two random variables 

ranged in [0, 1] uniformly. In some references, gbest has been defined individually for each 

particle with a defined neighborhood. Each particle is considered to have a neighborhood 

consisting of a number of other particles that impacts on the particle’s movement. 

Neighborhoods can be defined in different ways. Different criteria lead to different 

topologies and directly act upon results [29, 30]. 

 

2.5 Data collection 

Dataset was obtained from UC Irvine repository [31]. This dataset includes the data of 1030 

specimens of normally cured ordinary Portland concrete with different additives, collected 

from laboratories of various universities. All compressive strength tests have been 

performed on 15 cm cylindrical samples in accordance with standards [4]. The present study 

used only the data pertaining to compressive strength at the age of 28 days. Overall, 428 data 

points (mix designs) of this dataset were employed. Of these 428 data points, 90% (383 data 

points) was used for training and the remaining 10% (43 data points) was used for testing 

the models. Table 1 shows the characteristics of the data used. 

 
Table 1: Basic descriptive statistics for the original database 

Avg. Max. Min. Unit Parameters 

265.16 540 102 kg/𝑚3 Cement 

86.08 359.4 0 kg/𝑚3 Blast furnace slag 

62.96 200.1 0 kg/𝑚3 Fly ash 

183.05 247 121.8 kg/𝑚3 Water 

7 32.2 0 kg/𝑚3 Superplasticizer 

956.11 1145 801 kg/𝑚3 Fine aggregates 

764.49 922.6 594 kg/𝑚3 Coarse aggregates 

36.69 81.75 8.54 MPa 28-day compressive strength 
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3 MODELS AND RESULTS 
 

In this section, the procedures to develop intelligent models to predict the 28-day 

compressive strength using ANN-PSO, SVR-PSO, and ANFIS-PSO are presented. The 

results of these models with the actual data are also compared. 

 

3.1 Modelling with ANN-PSO 

As mentioned, this study was conducted with 428 mix designs, divided into two groups of 

training (383 mix designs) and test (43 mix designs). The first step in the development of an 

ANN for predicting the compressive strength is to normalize the input data using Eq. 15. 

 

𝑋𝑛𝑜𝑟𝑚 =
𝑋 − 𝑋𝑚𝑖𝑛
𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 (15) 

 

The ANN model developed in this study is a feed-forward network with the back-

propagation algorithm. The back-propagation algorithm is the most successfully and widely 

used algorithm among artificial neural networks [32, 33]. Fig. 5 shows a schematic diagram 

of the developed network. This network consists of one hidden layer composed of sigmoid 

neurons and an output layer (purelin). The use of only one hidden layer reduces the 

complexity of the model. The network inputs include the quantities of cement, blast furnace 

slag, fly ash, water, superplasticizer, fine aggregates, and coarse aggregates, while its output 

is the 28-day compressive strength of concrete. Determining the number of hidden neurons 

is a critical decision concerning ANN architecture. In this connection, several equations 

have been proposed [34]. Assuming 2𝑁𝑖 + 1 as the maximum number of neurons required in 

the hidden layer, a trial and error process was carried out and the number yielding the best 

network performance was selected. The final outcome of this selection process was the use 

of 15 neurons in the hidden layer. The ANN’s ability to process information is closely 

related to its architecture and weights. In this study, to improve the ANN performance, its 

weights and biases were optimized using PSO. The primary parameters of PSO algorithm 

were the number of particles, the maximum number of iterations, inertia weight, and 

velocity coefficients, which are given in the table 2. The resulting model was developed with 

MATLAB (version 7.10.0.499(R2010a)) software. Figs. 6 and 7 compare the results of the 

ANN-PSO model with the actual values. 
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Figure 5. Architecture of the developed Neural network 

 

 
Figure 6. The relationship between actual and predicted values 
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Figure 7. Comparison of measured and predicted values by ANN-PSO model 

 

3.2 Modelling with SVR-PSO 

The same 383 and 43 data points used for the ANN model were also used for training and 

test of the SVR model. Again, model inputs were the quantities of cement, blast furnace 

slag, fly ash, water, superplasticizer, fine aggregates, and coarse aggregates, and the output 

was the 28-day compressive strength of concrete. The developed SVR model is based on 

radial basis function (RBF) kernel. SVR’s generalization capability heavily depends on its 

learning parameters including penalty factor (C) and RBF kernel deviation (ɣ). The 

nonlinear behavior of SVR model with respect to these parameters makes finding their best 

combination more difficult. Thus, in this study, the PSO algorithm was used to determine 

the optimal value of these two parameters and thereby improve the accuracy of the SVR 

model. The primary parameters considered for the PSO algorithm are given in the following 

table. Like before, modeling was carried out using MATLAB (version 7.10.0.499(R2010a)) 

software. Fig. 8 shows the linear relationship between the actual value and the model 

estimates. Also, Fig. 9 compares the predicted values with measured ones. 
 

 
Figure 8. The relationship between actual and predicted values 
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Figure 9. Comparison of measured and predicted values by SVR-PSO model 

 

3.3 Modelling with ANFIS-PSO 

Compressive strength was also predicted using an ANFIS model optimized with PSO 

algorithm. The ANFIS-PSO model was based on a Gaussian membership function and was 

coded using MATLAB (version 7.10.0.499 (R2010a)) software. The inputs of this model 

were again the quantities of cement, blast furnace slag, fly ash, water, superplasticizer, fine 

aggregates, and coarse aggregates. The primary parameters of the PSO algorithm, which 

were obtained through trial and error, are shown in Table 2. Figs. 10 and 11 compare the 

actual values with the estimations of the ANFIS-PSO model. 

 

 
Figure 10. The relationship between actual and predicted values 
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Figure 11. Comparison of measured and predicted values by ANFIS-PSO model 

 
Table 2: Main parameters of the PSO 

Parameters Value 

Model ANN SVR ANFIS 

Number of particles 50 30 20 

Number of iterations 300 150 250 

Cognitive acceleration (C1) 2 2 2 

Social acceleration (C2) 2 2 2 

inertia weight 0.8 0.8 0.9 

 

 

4. PERFORMANCE ASSESSMENT OF MODELS 
 

In this section, performances of constructed models (ANN–PSO, SVR-PSO, and ANFIS-

PSO) are evaluated using 43 testing datasets, which were not incorporated into the training 

models. To evaluate the accuracy of the mentioned models, three criteria are used: the 

coefficient of determination (R2; Eq. 16), mean absolute percentage error (MAPE; Eq. 17), 

and root mean square error (RMSE; Eq. 18). A predictive model is accepted as excellent 

when R2 is 1 and MAPE and RMSE are 0. 

 

𝑅2 = 1 −
∑ (𝑇𝑖 − 𝑃𝑖)

2𝑁
𝑖=1

∑ (𝑇𝑖 − �̅�)
2𝑁

𝑖=1

 (16) 

𝑀𝐴𝑃𝐸(%) =
1

𝑁
∑
⎸𝑇𝑖 − 𝑃𝑖⎹

𝑇𝑖
× 100

𝑁

𝑖=1

 (17) 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑇𝑖 − 𝑃𝑖)

2

𝑁

𝑖=1
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where 𝑇𝑖, 𝑃𝑖, �̅� and N are target/measured values, predicted values, mean of target values, 

and total number of input data, respectively[35]. 

The values of performance indices (R2, MAPE, and RMSE) for ANN–PSO, SVR-PSO, 

and ANFIS-PSO models are listed in Table 3. 

 
Table 3: Performance indices for various models 

ANFIS-PSO SVR+PSO ANN+PSO  

0.9409 0.9287 0.8919 R2 

6.7203 7.9363 10.0526 MAPE (%) 

2.9861 3.2362 4.0281 RMSE 

 

As presented in Table 3, the ANN model exhibits a poorer performance than the other 

two models. The SVR model shows a better performance than the ANN model in terms of 

not only accuracy, but also execution time and memory use. However, the ANFIS model 

shows the best performance among the assessed models. Note that errors of all three 

intelligent methods are acceptably low and they all can be counted as good alternatives to 

time-consuming and costly strength tests. Nevertheless, it should be reminded that, given the 

characteristics of these intelligent methods, a change in materials or conditions can have a 

negative effect on their accuracy. Also, using a more distributed dataset and a higher number 

of data items for training can make the results substantially closer to reality. 

 

 

5 CONCLUSION 
 

The present study was conducted to develop hybrid intelligent models for predicting the 28-

day compressive strength of concrete. For this purpose, the PSO algorithm was used to 

improve the performance of ANN, SVR, and ANFIS models developed for prediction of the 

compressive strength of concrete. This improvement was carried out by optimizing the 

parameter setting of the mentioned models with the PSO algorithm. Comparing the results 

of models with the actual values showed the acceptable accuracy of these hybrid intelligent 

data mining techniques in the prediction of compressive strength. Comparing the results 

showed that the ANFIS-PSO model provides more reliable predictions than the other 

methods. The results also indicated the superiority of the SVR-PSO over the ANN-PSO in 

terms of accuracy, execution time, and memory use. The best R2 achieved with the test 

dataset was 0.9409, which was obtained by ANFIS-PSO model. Moreover, the R2 achieved 

by SVR-PSO and ANN-PSO models were respectively 0.9287 and 0.8919. Finally, it can be 

concluded that the use of data mining techniques for analyzing the available experimental 

data and creating a model to predict the compressive strength of concrete can be of great 

assistance for avoiding the repeat of experiments. In addition, optimizing the parameters of 

data mining models with PSO leads to certain improvement in their performance and 

reliability and generalizability of their results. 
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