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ABSTRACT 
 

Vulnerability assessment of structures encounter many uncertainties like seismic excitations 

intensity and response of structures. The most common approach adopted to deal with these 

uncertainties is vulnerability assessment through fragility functions. Fragility functions 

exhibit the probability of exceeding a state namely performance-level as a function of 

seismic intensity. A common approach is finding some response points of the fragility 

function and then fitting a typical probability distribution like lognormal through curve 

fitting estimation techniques. Maximum-likelihood approach is a fitting method to find the 

probability distribution parameters. Performing this approach for distributions like 

lognormal which is defined by just two parameters are straight forward while for more 

complicated distribution which are based on additional characterizing parameters is not 

feasible, since this approach is based on minimizing an error function through classic 

mathematical approaches like calculating partial derivations. An applicable modification is 

to add an efficient optimization approach to determine maximum-likelihood function. In this 

article, an optimization algorithm is proposed with maximum-likelihood-estimation and the 

results indicate the efficiency and feasibility of future developments in finding the most 

appropriate fragility function. 
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1. INTRODUCTION 
 

Vulnerability analysis of structures under various intensity of seismic excitation is the 

objective in performance assessment frameworks. The available vulnerability analysis 

procedures attempt to consider all uncertainties that exist. In this regards, Moehle and 

Deierlein [1] proposed a probabilistic framework known as the probabilistic performance 

based engineering (PBE), for the purpose of considering all uncertainties base on total 

probability rule. These uncertainties consist of hazard analysis, structural response and 

decision variable for a comprehensive decision-making framework. In this framework, the 

seismic hazard analysis based on location characteristic is run, generating the hazard 

probability curves. Fallowed by it, structural analysis lead to finding the probability 

structural response as a function of intensity levels, which in turn the probability of damage 

state of performance limit state (LS) is derived. The outcome of this three steps procedure 

contributes to decision making analysis, as a consequence of vulnerability analysis.  

Determining the unconditional or total probability of a state function of a structural 

response due to various intensity excitations is an essential issue in this framework. This 

function is termed as fragility function in seismic engineering terminology, and is widely 

assessed as a prerequisite of vulnerability analysis. Various analytical approaches are 

developed to drive fragility function of structures or structural components in previous 

studies. Most of these approaches can be found in [2,3].  

In general, fragility function is a probabilistic expression of not satisfying a state, like 

performance level, as a function of excitation variable as independent variable. Fragility 

function is usually expressed as a cumulative distribution function (CDF). Here CDF means 

the probability of less than or equal to a given value of uncertain quantity. In the case of 

fragility curves, CDF is an illustration of probability of exceedance of a state like 

performance level as a function of seismic intensity. Ellingwood et al. [4] used incremental 

dynamic analysis (IDA [5]) for data collection and then estimating fragility functions based 

on lognormal regression. IDA is an analytical framework in which various records of real 

seismic action time-history are chosen based on site specification and hazard analysis. Each 

one of these records will be scaled step-wise as a set of time-histories to represent range of 

intensities from very probable earthquake with low intensity to very rare earthquake with 

high intensity. The given structure will be analyzed in every scaled time-history of the 

record. Maximum engineering demand parameter (EDP) of each time-history scale step 

would be identified versus the intensity measure (IM) of that scaled time-history. For this 

purpose, an ascending curve for each record is generated. For each intensity measure level, 

conditional probability of limit state of exceedance (PLS|IM=im) can be estimated over 

observed data. The approach for developing fragility function based on IDA is implemented 

through FEMA-P695 [6].  

Shinouzuka et al. [2] introduced statistical study of structural fragility function of bridge 

structures with lognormal CDF regression. Lognormal distribution is a common choice because 

it fits structural global and component failures [7-9]. In most cases in seismic PBE common 

form of fragility function is expressed as a lognormal CDF. This distribution has two definition 

parameters that are estimated by the maximum likelihood estimation (MLE) over collected data 

from analyses. Another reason for using lognormal is its inherent simplicity in definition by the 

first and second moments of distribution (mean and standard deviation parameters).  
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Fragility functions derived from this methodology are univariate model; this means they 

are based on a single damage state. However, there is potential for developing multimodal 

fragility function for considering different damage state in different intensity levels. 

Recently some studies like Yazdi et al. [10], are conducted to developing fragility function 

as multivariate model for considering several damage state. In this study because of 

limitation of MLE, another regression methods were utilized.  

MLE method utilize a penalty function and try to find a feasible solution. The 

mathematical method for solving this function, which is called the classic method in this 

article, involves finding the minimum point of penalty function. Doing mathematical 

operation on a generated penalty function for a simple distribution with one or two 

description parameters is easy to solve. The limitations of the classic MLE method have 

made it difficult to expand fragility function to higher level function like multivariate and 

multimodal functions. The purpose of this study is to use an optimization tool during the 

MLE process. This tool allows for utilizing more complicated functions and precise 

probabilistic models than the two-parameter lognormal model. Therefore, as a solution the 

harmony search (HS) optimization algorithm is proposed.  

HS as a metaheuristic approach is introduced by Geem et al. and Lee and Geem [11,12], 

inspired by improvisation in music. The harmony in music is comparable to optimization 

solution vector and musician improvisations are analogous to the search schemes in 

optimization techniques. This method is improved by Mahdavi et.al [13]. Different 

application of this algorithm can be found the work of Kaveh and talatahari [14], Kaveh and 

Shakuri [15] and Geem [16]. 

In this study, this algorithm has been investigated to generate lognormal distributions for 

fragility functions through IDA data set and compared with classic regression solution. 

Implementing this methodology will make possible to utilizing higher level distribution 

functions. This framework is illustrated in Fig. 1. 

 
Figure 1. Flowchart for generating fragility curve through closed-form and optimisation 

approachs 
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2. SAC-FEMA VUNERABILITY ASSESSMET METHODOLOGY 
 

For determining the probability of fragility of a LS, SAC-FEMA methodology is applied 

widely in seismic engineering. This methodology is inspired by existing procedures in 

nuclear engineering proposed by [17,18]. This procedure will be applied through performing 

incremental dynamic analysis on a nonlinear model of structure. In this method, pseudo 

spectral acceleration 𝑆𝑎(𝑇1, 𝜉%) corresponding to first period (𝑇1) and critical damping ratio 

(𝜉) represents the intensity measure of seismic action. This measure is applied to determine 

structural response, probability of fragility and hazard measure probability, according to 

each level of intensity. 

The process of calculating unconditional or total probability of fragility in the analytical 

approach of SAC-FEMA failure with respect to all hazard levels can be expressed as Eq (1) 

which is derived from total probability rule: 

 

(1) P[LSi]
= ∑ P[IM=im]

i

 . P𝐿𝑆i|A=a 

 

Where P[IM=im] is the hazard function of intensity measure IM or probability of occurrence 

of hazard level equal to im. PLS|A=a is the fragility function which represents the probability 

of reaching to the pre-defined (LS)s when hazard level IM is equal to im. The common and 

straight form of this function is illustrated in Eq (2).  

 

(2) PLS|A=a= ∫
1

𝑥β√2π
  e

-0.5(
log(

𝑥
θd

)
2

𝛽2 

a

0

dx=Φ(
ln (

𝑥

θd
)

β
) 

 

Where, Φ(∙) is the CDF of standard normal or Gaussian probability distribution, 𝑥 is the 

continuous random variable of intensity parameter, 𝜃𝑑 is the lognormal mean of demands in 

the measure of intensity range and 𝛽 is the lognormal deviation of demands. Curve 

illustration of this function for 𝑥 domain only depends on 𝜃𝑑 and 𝛽. Those distribution 

parameters are expressed with appropriate intensity measures in order to represent the 

dominant feature of the ground motion [19].  

To find a fair distribution of fragility probability in each performance level based on 

intensity measure, calculating response of structure in various intensities that can lead to 

fragility is a necessary. For example in IDA, presented by [5], various seismic time history 

can result in different response histories at the same intensity levels. An illustrative example 

of this method can be found in Vamvatsikos and Cornell [20]. A comprehensive study in 

where the best fitting distribution is proved is yet to be conducted. The existing problem is 

because of difficulty in finding distribution parameter of higher level probability 

distributions. According to the finding of this study this problem can be solved by applying 

an efficient optimization algorithm like HS.  
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3. THE REGRESSION AND ESTIMATION THEORY 
 

In SAC-FEMA methodology in each performance level there are some counts of response of 

structure equal to the counts of the seismic records. This measured data is of random 

component where are represented all possible data. Estimation theory is a statistical tool 

applied in estimating the values of parameters based on observed data. Based on this theory, 

the descriptor parameter of state space is estimated through a small random sample. The 

probabilistic approach of estimation (applied in this article) assumes that the measured data 

is random with probability distribution depending on the parameters of interest. There exist 

sufficient methods for estimating the distribution parameters like [21]: maximum likelihood 

estimation, minimum-variance unbiased estimation, Bayes estimation etc. These methods 

are not without their disadvantages depending on their mathematical approaches. 

The most common estimation method for determining distribution parameters of fragility 

function which is compatible with generating sample data from IDA is MLE. MLE is a 

probabilistic method in estimating the parameters of a statistical model’s given data. By 

assuming the lognormal probability distribution fragility function with the unknown mean 

and variance, they are estimated with MLE while only some response point is available 

through IDA for a set of seismic records. For this set of data and underlying statistical 

model, MLE selects the set of values of the model parameters which maximizes the 

likelihood function. This maximization is in agreement of with the observed data, while in 

random variables space it maximizes the probability of the observed data under the resulting 

distribution. MLE provides a unified approach for estimation, which is very common in 

estimating normal and lognormal distributions, which are of two parameters (mean and 

variance). The MLE method principle is briefed here: Assume that there exist a sample set 

{𝑠𝑎1
, 𝑠𝑎2

, ..., 𝑠𝑎𝑛
} of IDA in a state of performance. This set should be independent and 

identically distributed (i.i.d sample) which follows a probability density function of 𝑓0( ∙|Θ), 

where Θ is a vector of parameters for this function. In the case lognormal distribution, 

parameter vector is {𝜃, 𝛽} or the mean and variance. The function 𝑓0 is an unknown 

distribution which depends on unknown vector Θ. For all possible situations, joint density 

function for all observations of i.i.d can be expressed as [21]: 

 

𝑓(𝑆𝑎|Θ) = 𝑓(𝑠𝑎1
, 𝑠𝑎2

, … , 𝑠𝑎𝑛
|Θ) = 𝑓0(𝑠𝑎1

|Θ) × 𝑓0(𝑠𝑎2
|Θ) × … × 𝑓0(𝑠𝑎𝑛

|Θ) (3) 

 

The function 𝑓 can be observed from a different perspective. If the sample values are 

fixed parameters and Θ is function of variables, this function is identified by ℒ and named 

likelihood function, presented as: 

 

ℒ(Θ; 𝑠𝑎1
, 𝑠𝑎2

, … , 𝑠𝑎𝑛
) = ∏ 𝑓(𝑠𝑎𝑖

|Θ)

𝑛

𝑖=1

= ∏ Φ(
ln (

𝑠𝑎𝑖

θd
)

β
)

𝑛

𝑖=1

 (4) 

 

Where Θ = {𝜃𝑑 , 𝛽}. the objective of MLE method, is estimating the Θ vector to estimate a 

lognormal distribution through the sample space, or to find an estimated Θ̂ which would be 



S. Dehghani Fordoei, S.A. Razavian Amrei, M. Eghbali and M. Sh. NasrollahBeigi 592 

as close to the true value of Θ as possible. In all possible situations of vector Θ, the best 

estimated Θ̂ has largest likelihood or amount of ℒ. Determining the best fit or ℒ maximum 

an optimization issue. 

 

3.1 Classic closed form MLE 

Finding the ℒ maximum can be done through a mathematical straightforward procedure, 

where the derivatives of the main function of likelihood are involved. For normal probability 

distribution where vector of Θ̂ has only the two variables of 𝜃𝑑 and 𝛽. This procedure is run 

through calculating the gradient and laplacian operator of likelihood function. The gradient 

and laplacian are the first and the second partial derivatives of this function: 

 

find Θ̂ = (𝜃𝑑 , 𝛽) ;  ∇L(Θ̂) = 0 
(5) 

if    ∇
2
L(Θ̂) < 0 

 

Calculating these operators in a multi variant function introduce an extremum point of 

likelihood function which it is not necessarily the global maximum, that is the estimated 

point in the space of all possible 𝜃𝑑 and 𝛽 are a local maximums. For more complicated 

probability distributions which are based on more parameters and have conditional sub 

spaces this method may face some drawbacks. 

 

3.2 MLE through optimization algorithm 

When facing difficulty in calculating the derivations of likelihood function, a numerical 

algorithm is most appropriate tool. Numerical optimization procedures are widely applied in 

finding the extreme value of functions. Optimization refers to finding the best element from 

some set of variables [22]. Optimization problem is involved in maximizing or minimizing a 

real function by picking input values in systematic manner. In general, optimization includes 

finding the best available values of an objective function of several variables in a given 

defined domain. The objective of this study is to find the best regression of a probability 

distribution on the set of structure response caused by seismic excitations. Adapting an 

efficient numerical solution as soft computing instead of closed form solution would pave 

the way to develop fragility function of structures. Common form of this optimization 

problem is expressed as a maximization format like: 

 

(Θ̂)
𝑀𝐿𝐸

⊆ arg Max{ ℒ(Θ̂)} (6) 

 

Where in this expression arguments of the maxima is abbreviated as arg Max. To simplify 

computation the likelihood function, ℒ is substituted with ln(ℒ); since behavior of 

logarithmic function is better than the original form of ℒ. By this substitution the domain is 

restricted to positive real numbers.  

There are many numerical algorithms like genetic algorithm (GA), harmony search (HS) 

which have capability of calculating the estimated extreme value of a function. In this 

research, an estimation of probability distribution parameter of fragility is calculated through 

a numerical algorithm with a distribution which has maximum likelihood.  
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The numerical optimization algorithms are of two major categories: heuristic, and 

metaheuristic. Heuristic algorithms are mathematical tools for solving problems as an 

alternative for classical methods. Compared to the classical methods, the heuristic 

optimization can achieve response more quickly in complicated problems. Metaheuristic is a 

higher heuristic optimization procedure designed to find solution especially with incomplete 

or imperfect information or limited computation capacity [23]. Those algorithms generally 

are of iterative solving process nature. These algorithms generate a sequence of improving 

solutions which try to find an approximation of the exact solution. All of these methods are 

nature inspired and their iterative algorithms apply stochastic components accompanied with 

random variables [24].  

All optimization methods have strengths and weakness in solving specific set of 

problems. The merit of each optimization algorithm is measured against the given problem 

condition. Among the possible drawbacks of the heuristic algorithms being stack in local 

optima is the most outstanding, while the metaheuristic methods can often find good 

solution with less computational effort than heuristic methods. The implementing those two 

are presented in several studies like [25–27].  

 

 

4. HS OPTIMIZATION FOR FRAGILITY ASSESSMENT 
 

The two main feature of a metaheuristic solution approach are: diversification, which is a 

metric for searching all domains, and intensification, which is the capability of focusing on a 

subset of whole domain where the probability of finding optimum is greater. Metaheuristic 

optimization algorithms use a compromise of local search and global exploration by means 

of these two features. The diversification via randomization avoids the solutions being 

trapped at local optima, while increases the diversity of the solutions [28]. To avoid trapping 

in local optima, different metaheuristic algorithms like ant-colony (AC), tabu search (TS), 

HS, and GA are introduced [27]. Due to the specific capability and functionality of each 

algorithm, choosing the most efficient is difficult. Diversification and intensification features 

in each algorithm are antithetic, while their balanced combination makes an algorithm 

efficient. Inordinate diversification makes an algorithm hard to converge, and inordinate 

intensification traps an algorithm in local optima. 

HS algorithm is based on making random harmony (solution vectors), provided that the 

generated harmony yields better solution than the previous stored harmony. The harmony 

memory will be updated by a better solution. This process will continue until convergence 

criteria is satisfied. This process consist of the following five main steps [12]: 

 Initializing the optimization problem and algorithm parameters, like defining objective 

function 𝑓(𝑥) where 𝑥 is the set of each design variable, harmony memory matrix size 

(HMS) where it is the number of solution vectors in memory, harmony memory 

considering rate (HMCR), pitch adjusting rate (PAR) and convergence criteria [11,12]. 

 Initialize harmony memory (HM) matrix which is fed with randomly generated solution 

vectors and stored by values of the objective function 𝑓(𝑥). 

 Improvise a new harmony from the HM based on HMCR, PAR and randomization. For 

example an HMCR of 0.95 indicates that the HS algorithm will choose the variable value 

from the stored values in the HM with a 95% probability and from the entire feasible 



S. Dehghani Fordoei, S.A. Razavian Amrei, M. Eghbali and M. Sh. NasrollahBeigi 594 

domain with a 5% probability. PAR parameter tries to adjust the final values within a 

neighbourhood of stored value.  

 Update the HM with the best solution and terminate the memory solution vectors. 

 Repeat step 3 and 4 until convergence or satisfying termination criteria is met. 

This algorithm is implemented as an optimization code based on Fig. 2, flowchart.  

 

 
Figure 2. Optimization procedure of the harmony search algorithm [29] 

 

The HS methodology for finding probability distribution of a prototype structure is 

described as: First, an IDA is implemented. Next the intensity measure of structure is 

determined for the three performance limit states and then for these data, fragility 

distribution parameters is determined through closed form classical and harmony search 

optimization approach for comparison and verification. 

 

 

5. CASE STUDY 
 

According to assess the fragility probability distribution, the well-known benchmark 3 and 9 

story SAC steel structural models (Fig. 3) located in California is selected. More description 

of this frame model is found in [30–32]. The structural models in this study is a two 

dimensional nonlinear model with moment resisting frame developed in OpenSees program 

[33]. Nonlinear behaviour of frame is modelled through the concentrated plasticity of hinges 

in beams and columns. The second order effects of 𝑃 − Δ according to Gupta and 

Krawinkler [31] is considered in all analyses. The behaviour of plastic hinges is simulated 

by the modified Ibarra-Krawinkler deterioration model with bilinear hysteretic response 

[34,35]. The hysteretic response of this material is calibrated with respect to the 

experimental data of steel beam-to-column connections and multivariate regression formulas 
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are provided to estimate the deterioration parameters of the model for different connection 

types. These correlation have been adopted by PEER/ATC 72 [36].  

In addition to modelling full nonlinear behaviour of beams and columns with acceptable 

accuracy, modelling panel zones lead to better estimation of shears, moments and axial 

forces in members [37]. In this study, panel zones are modelled through the approach 

introduced by Gupta and Krawinkler [31] as a rectangle composed of eight very stiff elastic 

beam-column elements with one zero-length element which serves as a rotational spring to 

represent shear distortions in the panel zone. 

IDA is run for the above mentioned model, with a suit of 20 ground motion time history 

of far field seismic event developed specifically for SAC steel project through hazard 

analysis [38] are tabulated in Table 1. These ground motions are categorized by their 

probability of exceedance (or their corresponding mean return interval). In this study ground 

motions are selected from all 2%, 10% and 50% probability of exceedance in order to 

consider all seismic frequency content properties in dynamic analyses. 

In this study, the first mode spectral pseudo acceleration with 5% critical damping 

(𝑠𝑎(𝑇1, 𝜉 = 5%)) and maximum inter story drift (𝜃𝑚𝑎𝑥) is applied as intensity measure and 

engineering demand parameter, respectively [5,39]. IDA curves for 3 and 9 story frames is 

presented in Fig. 4. 

Performance level LSs are introduced on based on specifications of FEMA-350 [40]. 

There are three main performance levels according to this guideline: Immediate Occupancy 

(IO), Collapse Prevention (CP) and Global Dynamic Instability (GI). Here IO performance 

level is defined as 𝜃𝑚𝑎𝑥 = 1%, so all intensity measures with 𝜃𝑚𝑎𝑥 > 1% lead to 

exceedance of IO performance level. CP performance is violated when local tangent on the 

IDA curve reaches 20% of the elastic slope but not far from 𝜃𝑚𝑎𝑥 = 10%. GI performance 

level become evident provided that IDA curve get flat. 
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Figure 3. (a) 3 and (b) 9 story SAC Steel structural model [32] 

 

The common fragility models assume the following two parameters of lognormal 

distribution of θd and β for simplicity. In this study all calculation are made according to the 

presented flowchart in Fig. 1, above mentioned calculation of probability distribution 

parameter through classical closed-form methodology with solving Eq (5), and harmony 

search optimization method with calculating Eq (6) will be done. Final results are presented 

in Table 2 where it is observed that there exist a good convergence between classical method 

and harmony search optimization. These calculated distribution parameters introduce an 

optimum fragility function curve in Fig. 5. 

 
Table 1: Suit of 20 ground motion time history of far field seismic event [38] 

SAC 

Name 
Record Magnitude 

Distance 

(km) 

Scale 

Factor 

Number 

of Points 

DT 

(sec) 

Duration 

(sec) 

PGA 

(cm/sec2) 

LA07 Landers, 1992, Barstow 7.3 36 3.2 4000 0.02 79.98 412.98 

LA08 Landers, 1992, Barstow 7.3 36 3.2 4000 0.02 79.98 417.49 

LA09 Landers, 1992, Yermo 7.3 25 2.17 4000 0.02 79.98 509.70 

LA10 Landers, 1992, Yermo 7.3 25 2.17 4000 0.02 79.98 353.35 

LA11 Loma Prieta, 1989, Gilroy 7 12 1.79 2000 0.02 39.98 652.49 

LA12 Loma Prieta, 1989, Gilroy 7 12 1.79 2000 0.02 39.98 950.93 

LA31 Elysian Park (simulated) 7.1 17.5 1.43 3000 0.01 29.99 1271.20 

LA32 Elysian Park (simulated) 7.1 17.5 1.43 3000 0.01 29.99 1163.50 

LA33 Elysian Park (simulated) 7.1 10.7 0.97 3000 0.01 29.99 767.26 

LA34 Elysian Park (simulated) 7.1 10.7 0.97 3000 0.01 29.99 667.59 

LA35 Elysian Park (simulated) 7.1 11.2 1.1 3000 0.01 29.99 973.16 

LA36 Elysian Park (simulated) 7.1 11.2 1.1 3000 0.01 29.99 1079.30 

LA45 Kern, 1952 7.7 107 2.92 3931 0.02 78.6 141.49 

LA46 Kern, 1952 7.7 107 2.92 3931 0.02 78.6 156.02 

http://nisee.berkeley.edu/data/strong_motion/sacsteel/motions/images/la07.gif
http://nisee.berkeley.edu/data/strong_motion/sacsteel/motions/images/la08.gif
http://nisee.berkeley.edu/data/strong_motion/sacsteel/motions/images/la09.gif
http://nisee.berkeley.edu/data/strong_motion/sacsteel/motions/images/la10.gif
http://nisee.berkeley.edu/data/strong_motion/sacsteel/motions/images/la11.gif
http://nisee.berkeley.edu/data/strong_motion/sacsteel/motions/images/la12.gif
http://nisee.berkeley.edu/data/strong_motion/sacsteel/motions/images/la31.gif
http://nisee.berkeley.edu/data/strong_motion/sacsteel/motions/images/la32.gif
http://nisee.berkeley.edu/data/strong_motion/sacsteel/motions/images/la33.gif
http://nisee.berkeley.edu/data/strong_motion/sacsteel/motions/images/la34.gif
http://nisee.berkeley.edu/data/strong_motion/sacsteel/motions/images/la35.gif
http://nisee.berkeley.edu/data/strong_motion/sacsteel/motions/images/la36.gif
http://nisee.berkeley.edu/data/strong_motion/sacsteel/motions/images/la45.gif
http://nisee.berkeley.edu/data/strong_motion/sacsteel/motions/images/la46.gif
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LA47 Landers, 1992 7.3 64 2.63 4000 0.02 79.98 331.22 

LA48 Landers, 1992 7.3 64 2.63 4000 0.02 79.98 301.74 

LA49 Morgan Hill, 1984 6.2 15 2.35 3000 0.02 59.98 312.41 

LA50 Morgan Hill, 1984 6.2 15 2.35 3000 0.02 59.98 535.88 

LA59 Whittier, 1987 6 17 3.62 2000 0.02 39.98 753.70 

LA60 Whittier, 1987 6 17 3.62 2000 0.02 39.98 469.07 

 

  
(a) (b) 

Figure 4. IDA curves for (a) 3 story frame, (b) 9 story frame 
 

  
(a) (b) 

Figure 5. (a) 3 story frame Fragility function curves, (b) 9 story frame Fragility function curves 

Table 2: Comparing fragility curve distribution parameters with both classic closed-form 

mathematical and harmony search approaches 

Frame Optimization approach 

Performance levels 

IO CP GI 

θ β θ Β θ Β 

3 Story 
Classic mathematical approach -0.44840 0.44580 0.41730 0.62270 0.58600 0.59820 

Harmony search approach -0.44837 0.43456 0.41727 0.60697 0.58603 0.58308 

9 Story 
Classic mathematical approach -0.40730 0.66300 0.73060 0.62650 0.82680 0.58980 

Harmony search approach -0.40426 0.64618 0.73060 0.61066 0.82680 0.57488 

http://nisee.berkeley.edu/data/strong_motion/sacsteel/motions/images/la47.gif
http://nisee.berkeley.edu/data/strong_motion/sacsteel/motions/images/la48.gif
http://nisee.berkeley.edu/data/strong_motion/sacsteel/motions/images/la49.gif
http://nisee.berkeley.edu/data/strong_motion/sacsteel/motions/images/la50.gif
http://nisee.berkeley.edu/data/strong_motion/sacsteel/motions/images/a59.gif
http://nisee.berkeley.edu/data/strong_motion/sacsteel/motions/images/la60.gif
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6. CONCLUSION 
 

The common form of fragility probability distribution of structurs is calculated through IDA 

observed data. To determine how these data set can be modeled as a probabilistic 

distribution curve, a curve fitting approach can be used. Curve fitting is based on the 

underlying assumption that the observed data is driven by some process that can be modeled 

as a probabilistic distribution function. maximum likelihood estimation is an common 

approach of estimating the parameters of a probabilistic distribution given observations, by 

finding the parameter values that maximize the likelihood of making the observations given 

the distribution parameters. The closed form mathematical method to find the best fitting 

probability distribution among collected data for each performance level is based on 

calculating gradient and laplacian to find argument maxima of likelihood function. This 

mathematical operation on a generated function for a simple distribution with one or two 

description parameters is easy to solve. The complexity of determining partial derivation of 

gradient and laplacian have made it difficult to expand fragility function to higher level 

function like multivariate and multimodal functions. The purpose of this study is to use an 

optimization tool during the maximum likelihood estimation process. This tool allows for 

utilizing more complicated functions and precise probabilistic models than the two-

parameter lognormal model. Therefore, as a solution HS optimization algorithm is proposed 

in estimation process. 

As a case study two well-known benchmark structure is chosen. Incremental dynamic 

analyses of the 2D numerical models lead to collecting sets of observed data in several 

performance levels. According to flowchart illustrated in Fig. 1, classical approach and 

optimization approach is implemented to estimating the lognormal distribution parameters 

that has maximum likelihood. The results indicate a very high accuracy of optimization 

approach as expected, but this approach has many potentials including the use of complex 

probabilistic distributions, while the classical approach combines this ability with 

computational complexity of calculating partial derivations. 
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