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ABSTRACT 
 

The existence of recorded accelerograms to perform dynamic inelastic time history analysis 

is of the utmost importance especially in near-fault regions where directivity pulses impose 

extreme demands on structures and cause widespread damages. But due to the scarcity of 

recorded acceleration time histories, it is common to generate proper artificial ground 

motions. In this paper an alternative approach is proposed to generate near-fault pulse-like 

ground motions. A smoothening approach is taken to extract directivity pulses from an 

ensemble of near-fault pulse-like ground motions. First, it is proposed to simulate nonpulse-

type ground motion using Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and Wavelet 

Packet Transform (WPT). Next, the pulse-like ground motion is produced by superimposing 

directivity pulse on the previously generated nonpulse-type motion. The main objective of 

this study is to generate near-field spectrum compatible records. Particle Swarm 

Optimization (PSO) is employed to optimize both the parameters of pulse model and cluster 

radius in subtractive clustering and Principle Component Analysis (PCA) is used to reduce 

the dimension of ANFIS input vectors. Artificial records are generated for the first, second 

and third level of wavelet packet decomposition. Finally, a number of interpretive examples 

are presented to show how the method works. The results show that the response spectra of 

generated records are decently compatible with the target near-field spectrum, which is the 

main objective of the study. 
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1. INTRODUCTION 
 

Near-fault ground motions have different characteristics from those of far-fault ground 

motions. Forward-directivity pulse and permanent displacement so-called "fling step" are 

the most important ones which should be considered during designing and analyzing the 

response of structures located near the source. The high-amplitude, long-period velocity 

pulses are produced by the forward-directivity effects which are resulting from the pattern of 

fault dislocation. When fault rapture propagates toward the site with a velocity that is almost 

equal to shear wave velocity and the direction of fault slip is aligned with the site, this shows 

itself in the form of velocity pulse in the velocity time history [1]. In case of strike-slip 

faults, forward-directivity pulses and fling steps occur in fault normal and fault parallel 

directions, respectively. But for dip-slip faults, both the fling step and the directivity pulse 

occur on the strike-normal component [2]. The forward-directivity pulses are just considered 

here for the aims of this study. Imposing extreme demands (such as higher base shears, 

inter-story drifts and roof displacements) on structures by pulse-like ground motions on the 

one hand and the lack of recorded near-source acceleration time histories plus the 

importance of existence of such records in order to perform dynamic inelastic time history 

analysis on the other, provide researchers with an extra incentive to investigate and present 

methods in order to generate proper near-fault pulse-like ground motions. 

There are different methods of generating artificial records in the literature using artificial 

intelligence and wavelet analysis; Ghaboussi and Lin [3] used a replicator neural network as 

a compression tool which was obligated to squeeze the discrete Fourier spectra of 

accelerograms into smaller dimension. Then they used a multi-layer feed-forward neural 

network to establish a relation between response spectrum and compressed Fourier 

spectrum. Lin and Ghaboussi [4] used stochastic neural networks to generate multiple 

spectrum compatible accelerograms, so that they corrected the shortcoming of their previous 

method which was generating just one accelerogram using deterministic neural networks. 

Lee and Han [5] developed five neural-network-based models to produce artificial 

earthquake and response spectra. Rajasekaran et al. [6] presented five models based on 

neural networks in order to generate artificial records and response spectra using wavelet 

transform and principal component analysis.  

Suarez and Montejo [7] presented a new approach by scaling the wavelet time history 

components of accelerogram so that its response spectrum is well matched with a specified 

design spectrum within specific periods. Hancock et al. [8] provided a new method to match 

response spectra of recorded accelerograms using wavelets where there is no need to 

subsequently apply baseline correction. Kaveh and Mahdavi [9] modified ground motions 

using a new method based on wavelet transform and enhanced colliding bodies optimization 

in a way that the response and the target spectra are well-matched. Kaveh and Mahdavi [10] 

used the capability of wavelet transform in decomposing a ground motion into its frequency 

components and the vibrating particles system (VPS) algorithm to modify earthquake 

ground motion where their response spectra are compatible with a specific target spectrum. 

As of the 1994 Northridge, California, earthquake, most of the engineers and 

seismologists were sensible of special effects of pulse-like ground motions on structural 

damages and started studying characteristics and structural responses of these records [11-

18]. Many also tried to model forward-directivity pulses and simulate pulse-like records. 



GENERATION OF OPTIMIZED SPECTRUM COMPATIBLE NEAR-FIELD … 691 

Mavroeidis and Papageorgiou [19] used Gabor wavelet obtained through multiplying a 

harmonic oscillator by a bell-shaped function to model pulses and then generated pulse-like 

ground motions via combining synthetic high-frequency component with the generated 

long-period pulse. Li and Zhu [20] presented an equivalent pulse model with pulse period, 

pulse intensity, number of half-period cycles and contribution ratio as its parameters. They 

concluded that the pulse period is not the same as the predominant period in the velocity 

response spectrum, but their ratio tends to remain constant. Yushan et al. [21] used empirical 

mode decomposition (EMD) as an adaptive filter to decompose near-fault pulse-like ground 

motions and identify acceleration pulses in them. Tian et al. [22] used a simple continuous 

function to simulate pulse-like velocity time history and their equivalent model includes 5 

parameters in which two of them refer to pulse period and peak velocity and the rest 

represent the shape of the pulse. Baker [23] used self-similarity revealing capability of the 

wavelet analysis to extract velocity pulses from velocity time histories and then developed a 

quantitative criterion for classifying a ground motion as "pulse-like". Fan and Dong [24] 

generated near-fault pulse-like ground motion by combining filtered real or artificial far-

fault nonpulse-type ground motion by time-frequency filter with equivalent pulse where the 

generated motion could reflect the local characteristics of site and the pulse-like 

characteristics of near-fault ground motion. Nicknam et al. [25] proposed a hybrid method, a 

combination of theoretical green's function method and a stochastic finite-fault approach, to 

synthesize the near-fault broadband time histories. Yaghmaei-Sabegh [26] proposed a 

method based on continues wavelet transform to identify pulse-like ground motions through 

considering contribution of different levels of frequency. Ghodrati et al. [27] used PSO-

based neural networks to simulate near-fault ground motions. Tahghighi [28] examined the 

validity of simulating near-fault ground motions using stochastic finite-fault methods. 

Mukhopadhyay and Gupta [29] used smoothening technique to extract directivity pulses 

from accelerograms directly and then represented "pulse index" based on the value of 

maximum fractional signal energy contribution by any half-cycle of the velocity time history 

for identifying pulse-like records. They also proposed using Mexican Hat function as the 

equivalent pulse models. 

In this study, an alternative algorithm is presented in order to generate artificial pulse-like 

ground motion which its response spectrum is compatible with a near-field target spectrum. 

The generation process includes simulation of nonpulse-type spectrum compatible high 

frequency component of ground motions and directivity pulses separately and then 

combining them to accomplish final pulse-like ground motion. Adaptive Neuro-Fuzzy 

Inference System (ANFIS), Wavelet Packet Transform (WPT), Discrete Wavelet Transform 

(DWT), Particle Swarm Optimization (PSO) and Principal Component Analysis (PCA) are 

used to achieve the desired goal. Smoothening method of pulse extraction is used here to 

extract directivity pulses, for it represents the directivity pulses far better than other methods 

of the same kind. After pulse extraction, the residual ground motions are used to train 

ANFIS networks. ANFIS can provide mapping between any input and output data; 

therefore, it is considered as an alternative to neural networks which are used frequently in 

the literature. In this study, ANFIS has been used to generate the high-frequency 

components of the ground motions and the equivalent pulse model has been adopted to 

replicate the intermediate- to long-period directivity pulses of the near-field ground motions. 

PCA is employed to reduce the dimensions of the ANFIS input vector. PSO is applied to 
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optimize the cluster radius in subtractive clustering, so that ANFIS networks are provided 

with minimum number of rules. PSO is also applied to optimize the parameters of the pulse 

model where there is a poor compatibility between the response spectrum of the artificial 

record and the target spectrum. 

 

 

2. MATERIALS 
 

2.1 Wavelet analysis 

2.1.1 Discrete wavelet transform 

The low frequency component forms the most important segment of many signals, so 

decomposing a signal into its frequency components is counted as the most important 

application of signal analysis tools. The discrete wavelet transform (DWT) is one of those 

tools that provide such possibility where signal is decomposed into two low- and high-

frequency components and are called approximation and detail, respectively. In fact, this 

method can be regarded as application of low-pass and high-pass filters. If each decomposed 

frequency components have as many data points as the original signal, this can lead to have 

doubled information rather than the signal itself where it is awkward to manage, so a process 

named downsampling is used to reduce the data points in approximation and detail 

coefficients by half [30]. DWT is reversible, that is, it is possible to reconstruct the original 

signal from its coefficients via inverse discrete wavelet transform (IDWT). To this end, first 

downsampled coefficients are reconstructed into real coefficients which have the same 

length as the original signal and then they are combined to synthesize the original signal. 

Each of the detail coefficients cover certain frequency range. 

 

2.1.2 Wavelet packet transform 

In wavelet packet transform (WPT) details as well as approximations are decomposed into 

their approximation and detail coefficients at each level. WPT includes downsampling and 

reconstruction just like DWT. 

 

2.2 Fuzzy logic 

Fuzzy logic (FL) is a concept derived from fuzzy sets in which membership depends on 

membership degree. There are two fundamental concepts that FL is based on: linguistic 

variables and fuzzy if-then rules with a mechanism to deal with the antecedents and 

consequences of rules. An effective method, called Adaptive Neuro-Fuzzy Inference System 

(ANFIS), developed by Dr. Roger Jang through combining FL and neurocomputing in order 

to deduct rules from observations where the tolerance for imprecision, uncertainty, partial 

truth and lower solution cost are counted as its advantageous [31]. ANFIS achieved 

prominence due to mapping an input space to an output space. 

There are two types of fuzzy inference systems: Mamdani and Sugeno. Sugeno systems 

are used with adaptive techniques like ANFIS, mainly because they are much more compact 

and highly efficient in terms of computation [32]. The inference process in Sugeno-type 

inference system includes: 
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 Fuzzification of input variables, as they are crisp numbers, into fuzzy sets 

 Application of fuzzy operators (AND or OR) in the antecedent part of the rules 

Linear or constant output membership functions can be used in Sugeno-type system, so 

that a rule in Sugeno-type fuzzy model can have the form: 

If Input1 = x and Input2 = y, then Output is z = ax + by + c 

 

 The output of each rule, zi, is weighted by the firing strength wi of the rule. The firing 

strength for the above rule is equal to: 

 

𝑤𝑖 = 𝐴𝑛𝑑𝑀𝑒𝑡ℎ𝑜𝑑(𝐹1(𝑥), 𝐹2(𝑦)) (1) 

 

where F1(x) and F2(y) are membership functions for Input1 and Input2. 

 Final output here is the weighted average of all rules' outputs: 

 

𝐹𝑖𝑛𝑎𝑙 𝑂𝑢𝑡𝑝𝑢𝑡 =
∑ 𝑤𝑖𝑧𝑖

𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

 (2) 

 

where N is the number of rules. The whole process in which a rule in a Sugeno system acts 

is shown in Fig. 1. 

Generation of a fuzzy inference system (FIS) with the minimum number of rules required 

to model the data and determination of its membership functions parameters are of primary 

importance in the formation of a FIS. One satisfactory solution is to use clustering. 

Subtractive clustering method proposed by Chiu [33] is used here in this study. 

In this method, first, each data point is considered to be cluster center and the potential of 

being cluster center for each data point xi is defined as follow: 

 

𝑃𝑖 = ∑ 𝑒−𝛼‖𝑥𝑖−𝑥𝑗‖
2

𝑛

𝑗=1

 (3) 

 

where α=4/ra
2 and ra is neighborhood radius. The data point with the highest potential is 

chosen as the first cluster center and then the potential of each data point decreases: 

 

𝑃𝑖 ⇐ 𝑃𝑖 − 𝑃𝑘
∗𝑒−𝛽‖𝑥𝑖−𝑥𝑘

∗ ‖
2

 (4) 

 

in which β=4/rb
2, rb=ηra, Pk

* and xk
* are the potential and the location of kth cluster 

center, respectively. η is called squash factor and is chosen somewhat greater than 1 in order 

to avoid obtaining cluster centers close to each other. The second cluster center is the data 

point with the highest revised potential after decreasing the potential of all data points. There 

are further parameters such as accept and reject ratios for which the cluster center 

determination process depends on. The potentials above the accept ratio are definitely 

accepted as cluster centers and the ones below the reject ratio are definitely rejected. In this 

study, the squash factor is set to 1.5, indicating that only clusters adequately far from each 

other are needed, the accept ratio is set to 0.8, indicating that only data points that have a 
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very strong potential for being cluster centers are accepted and the reject ratio is set to 0.7, 

indicating that you want to reject all data points without a strong potential. In subtractive 

clustering, each cluster is considered as a if-then rule. In this study, gaussian membership 

function with two parameter is used: 

 

𝜇𝐴𝑖
(𝑥) = 𝑒𝑥𝑝 {− (

𝑥 − 𝑐𝑖

𝜎𝑖
)

2

} (5) 

 

where c is cluster center and σ is standard deviation, defined: 

 

𝜎 = 𝑟𝑎 ∙ (max 𝑋 − min 𝑋) √8⁄  (6) 

 

where X is data vector including input and output data. 

 

 
Figure 1. The operation of a fuzzy if-then rule in a Sugeno-type system 

 

Using a given input/output data set, ANFIS makes it possible to tune and adjust 

membership function parameters during training process. A hybrid method consisting of 

backpropagation algorithm and least squares estimation is used here to tune parameters of 

the input and the output membership functions, respectively. 

 

2.3 Principal component analysis 

Principal component analysis (PCA) is a statistical method that is used for converting 

correlated variables into linearly uncorrelated variables/axes called principal components. 

This transform selects the axes which have the largest variances, so the number of principal 

components are usually less than the number of original variables. The largest the variance 

is, the higher the resolution and the identification ability are. 

PCA is used to reduce the higher-dimensional data to a lower one. The 

feature/compressed space in this technique obtains as: 

 

𝑌 = 𝑄𝑇𝑋 (7) 

 

in which Qm×L is called projection matrix and consists of L eigenvectors corresponding to 

L largest eigenvalues, Xm×n is the data matrix and Y is feature space with lowered L 

dimensions. 
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2.4 Particle swarm optimization 

Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm 

that has been presented in 1995 inspired by mass movement of birds and fish [34]. The 

algorithm is based on Generating a random number of particles (swarm) in the search-space 

with position (having the same dimension as the search-space) and velocity which are 

defined as follows: 

 

𝑋𝑖
𝑘 = (𝑥𝑖1

𝑘 , 𝑥𝑖2
𝑘 , ⋯ , 𝑥𝑖𝑑

𝑘 ) (8) 

𝑉𝑖
𝑘 = (𝑣𝑖1

𝑘 , 𝑣𝑖2
𝑘 , ⋯ , 𝑣𝑖𝑑

𝑘 ) (9) 

 

where Xi
k is the ith particle at the kth instance in a d-dimensional space and Vi

k is its velocity. 

For each particle, its velocity and position are updated, respectively, by the formulas: 

 

𝑣𝑘+1
𝑖 = 𝑤𝑣𝑘

𝑖 + 𝑐1𝑟1

(𝑝𝑖 − 𝑥𝑘
𝑖 )

∆𝑡
+ 𝑐2𝑟2

(𝑝𝑘
𝑔

− 𝑥𝑘
𝑖 )

∆𝑡
 (10) 

𝑥𝑘+1
𝑖 = 𝑥𝑘

𝑖 + 𝑣𝑘+1
𝑖 ∆𝑡 (11) 

 

in which w is inertia weight, c1 is personal learning coefficient, c2 is global learning 

coefficient, r1 and r2 are random numbers in the range of 0 and 1, and ∆t is time interval and 

usually its value is equal to 1. The method, called constriction coefficient, proposed by Clerc 

and Kennedy [35] for determining the mentioned coefficients of the Eq. (10), is used here: 

 

𝜒 =
2

𝜑 − 2 + √𝜑2 + 4𝜑
 (12) 

𝜑 = 𝜑1 + 𝜑2, 𝜑 > 4 (13) 

𝑤 = 𝜒,    𝑐1 = 𝜒𝜑1,    𝑐2 = 𝜒𝜑2 (14) 

 

In this study, it is proposed to use φ1 = φ2 = 2.05 which keeps a good balance between 

the two ability of developing the exiting responses (exploitation or local-search) and 

producing new responses (exploration). 

 

 

3. PROPOSED METHOD 
 

The objective of this study is to present an alternative method to generate near-fault 

spectrum compatible ground motions using ANFIS networks and wavelet analysis. To this 

end, first, it is proposed to extract pulses from an ensemble of near-source records. Then, the 

residual records are used to train ANFIS networks to simulate the nonpulse-type part of the 

near-source records. 

There are two well-known methods to extract velocity pulses in the literature: Baker's 

method [23] Mukhopadhyay and Gupta's method [29]. The smoothening technique of 

extracting pulses proposed by Mukhopadhyay and Gupta [29] is preferred to that of Baker 

[23] for the following reasons: 

Comparing Figs. 2a and b reveals that extracting pulses using Baker's method via 
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subtracting wavelets repetitively makes the residual ground motion lose more information 

than just pulse itself, only because of the wavelet shape. Multiple pulses are also treated the 

same as single ones in this method. Therefore, in this study, it is proposed to use 

Mukhopadhyay and Gupta's [29] pulse extraction technique and their proposed pulse model 

which are concurrent with each other. 

In this study, to find out if selected records are pulse-like, the pulse index for all has been 

calculated using following equation: 

 

𝑃𝐼 =
1

1 +  𝑒7.64−27𝑓𝑟𝑎𝑐𝐸𝑛(1)
 (15) 

 

where fracEn(1) is the largest fractional energy contribution among different half-cycles of 

velocity time history. PI>0.5 indicates that the record is classified as pulse-like (see Table 

A1 in the Appendix for the records used in this study, their pulse index, and their dominant 

Fourier period of pulse). After identifying a record as pulse-like, velocity pulses are 

extracted using smoothening method. In this method, pulses are categorized into three 

groups: (i) pulses of Type 1 with a large half-cycle in the middle and two small adjacent 

half-cycles, (ii) pulses of Type 2 with two comparable half-cycles, and third multiple pulses. 

The extraction process consists of 3 main steps: (i) determination of pulse-time window, 

that is, t = boundL and t = boundR, (ii) smoothening acceleration time history in order to 

exclude the incoherent high-frequency part of the signal and identify long-period directivity 

pulse through the equation yi = 1/4 xi-1 + 1/2 xi + 1/4 xi+1, where xi is the ith point of 

acceleration time history and yi is the smoothed value. The third step is to apply adjustments 

which include changing both the first and the last sharp-varying part of the pulse before and 

after the first and the last peak\trough to slow- or linear-varying one, and correcting the 

baseline, because the velocity and displacement pulses don't reach zero at the last instance of 

the pulse. Here, for the baseline correction, polynomial fits of zero and first order are 

performed to the first and third part of the entire displacement pulse signal before t = 

boundL and after t = boundR, respectively. Then, baseline is corrected using spline fit for 

the second part of the displacement pulse between t = boundL and t = boundR. Extracted 

and corrected pulse is shown in Fig. 3. After extracting the first pulses, the same procedure 

is conducted again on the residual records to have the second pulses extracted if possible. In 

the case of multiple pulses, the first and second or even third pulses of Type 1 or 2 can be 

extracted from the record. The extracted velocity pulses of Type 1, Type 2 and multiple-type 

are shown in Figs. 4a, 5a and 6a, respectively. 

 

 
Figure 2. Extracted velocity pulse from 1979 Imperial Valley-06, El Centro Array #5: (a) Baker's method 

[23], (b) Mukhopadhyay and Gupta's method [29] 
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Figure 3. Extracted and corrected pulse of the 1979 Imperial Valley-06 event recorded at EC 

Meloland Overpass FF station: (a) Pulse time-window identification, (d) Baseline-corrected 

acceleration pulse, (c) Baseline-corrected velocity pulse, (d) Baseline-corrected displacement 

pulse 

 

As shown in Figs. 4b, 5b and 6b, response spectra of near-fault ground motions have an 

amplification in pulse period region and it's not caught by the Boore and Atkinson [36] 

median prediction model, however, their attenuation model can predict the residual ground 

motion spectra decently (Baker [37]). It can be shown that the response spectra of the 

original pulse-like records are in good agreement with the near-fault prediction model 

proposed by Rupakhety et al. [38] and the so called narrow-band amplification region is well 

described by this model where the spectra of the residual ground motions after pulse 

extraction are compatible with the Boore and Atkinson [36] prediction model. The pseudo-

acceleration response spectra of pulse-like records, residuals, Boore and Atkinson [36] 

model and Rupakhety et al. [38] model for three records with corresponding pulses of Type 

1, 2 and multiple pulse are shown in Figs. 4b, 5b and 6b. 

After extracting directivity pulses of three types from near-fault ground motions, 

considering that residual ground motions are compatible with Boore and Atkinson [36] 
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directivity pulse model based on Mexican Hat function is employed here as the long-period 
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component of near-fault ground motions due to its resemblance with the extracted pulses 

(Mukhopadhyay and Gupta [29]): 

 

𝑣𝑀𝐻(𝑡) = 𝐴 (1 −
𝑡2

𝜎2
) 𝑒

−
𝑡2

2𝜎2 (16) 

𝑣1𝑀𝐻(𝑡) = 𝐴𝑡𝑒
−

𝑡2

2𝜎2 (17) 

 

where A is amplitude of the function, and σ has a relationship with dominant period of pulse 

via the following relations: 

 

𝜎 = 0.2220𝑇𝑣,𝑀𝐻 (18) 

𝜎 = 0.1570𝑇𝑣,1𝑀𝐻 (19) 

 

For the pulse Type 1, velocity amplitude Av is taken as A and its dominant period Tpv is 

used as Tv,MH, while for the pulse Type 2, its amplitude Av and dominant period Tpv are Aσe-

1/2 and Tv,1MH, respectively. 

The ultimate goal of this study is to generate synthetic spectrum compatible near-fault 

ground motion. To this end, two approaches are adopted. First, it is proposed to use scaling 

models to determine the parameters of pulse model. If there is a good compatibility between 

the response spectrum of artificial record and the proposed near-fault attenuation spectrum, 

the record is accepted as final desired spectrum compatible record. But in the case of poor 

compatibility, it is proposed to optimize pulse model parameters using PSO so that the target 

and synthetic spectra are in good agreement. 

The scaling models proposed by Mukhopadhyay and Gupta [39] are applied here to 

determine the parameters of equivalent pulse model: pulse amplitude Av, dominant period 

Tpv and occurrence time tlocation,p, that is: 

 

ln 𝐴𝑣,𝑝 = 0.1120𝑀𝑤 − 0.1066 ln(𝑟2 + 0.65622) − 1.1891 (20) 

ln 𝑇𝑝𝑣,𝑝 = 0.9639𝑀𝑤 − 5.3948 (21) 

𝑡𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛,𝑝 ≈ 𝑡𝑃𝐺𝐴 (22) 

 

in which Mw is the moment magnitude and r is the closest distance. 

 

 
Figure 4. Extracted velocity pulse and response spectra: (a) pulse Type 1, (b) response spectra 
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Figure 5. Extracted velocity pulse and response spectra: (a) pulse Type 2, (b) response spectra 

 

 
Figure 6. Extracted velocity pulse and response spectra: (a) multiple pulse, (b) response spectra 

 

 

4. INTERPRETIVE EXAMPLE 
 

To evaluate the performance of the proposed method, 25 records are chosen according to the 

site soil conditions and also their significant duration. All the records have been rotated into 

the fault-normal orientation prior to any other pre-processing. All the records have 180 ≤ 

Vs30 ≤ 360 meter per second, that is, they are recorded in a stiff soil site condition based on 

ASCE code 2010. Pulses of all accelerograms are extracted. All accelerograms are 

discretized at 0.01 second. The peak ground acceleration (PGA) of all residual 
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energy, the integral of the square of acceleration, is defined as significant duration here. The 

pseudo-velocity response spectra of all accelerograms are calculated by solving the single 

degree of freedom equation for earthquake ground motion using linear interpolation method 

at 1000 equally spaced points of periods between 0.01-10 sec, in logarithmic scale: 
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where ωl, ζ and ag(t) are the natural frequency, the damping ratio of the single degree of 

freedom system and the earthquake ground acceleration, respectively. 

Calculating pseudo-velocity response spectrum at 1000 discrete frequencies as the input 

of the ANFIS networks, we are dealing with a thousand-dimensional problem so that PCA, a 

data compression tool, is used to reduce the input space dimension. To this end, just 22 

eigenvectors corresponding to 22 largest eigenvalues are chosen providing a reasonably 

close approximation. Therefore, for the 23 records used to train the ANFIS networks, the 

compressed space equals: 

 

[𝑌]22×23 = [𝑄]1000×22
𝑇 ∗ [𝑋]1000×23 (25) 

 

in which [X] includes spectral values in real space for 23 records and thousand frequency 

points (dimensions), [Y] is the matrix of spectral values in feature/compressed space 

including 22-dimension, and [Q] is the eigenvectors matrix. Matrix Y is used as the input 

vectors of the ANFIS. 

Then, wavelet packet transform is applied to decompose the residual accelerograms into 

wavelet packet coefficients. The output layer of a single ANFIS network consists of just one 

node, so let take the kth wavelet packet coefficient in the ith level of decomposition and jth 

packet as the output of each ANFIS network: 

 

𝑐𝑗
𝑖(𝑘) = ∫ 𝑎𝑔(𝑡)𝜓𝑗,𝑘

𝑖 (𝑡)𝑑𝑡
+∞

−∞

 (26) 

 

where ag(t) is earthquake ground acceleration and ψi
j,k(t) is the mother wavelet. In this study, 

Daubechies mother wavelet of order 10 (db10) is used. The accelerograms are transformed 

into their first, second and third level of wavelet packet decomposition coefficients to 

investigate decomposition levels effects. There are 2 packets (just an approximation and a 

detail coefficients) at the first level, 4 packets at the second, and 8 packets at the third. Each 

packet includes 1509 points at the first level, 764 and 391 points at the levels 2 and 3, 

respectively. Therefore, 3018 ANFIS networks for level 1, 3056 ANFIS networks for level 

2, and 3128 ANFIS networks for level 3 are trained using PCA coefficients of the response 

spectra and single points of wavelet packet coefficients as the input and output of the 

networks, respectively. The structure of an ANFIS network with 22 inputs Y1, Y2, Y3, ..., Y22 

and one output c(i,j,k) is shown in Fig. 7. 

 

 
Figure 7. Depiction of ANFIS structure with 22 inputs and one output 
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In Sugeno-type system, Gaussian membership functions for input variables and linear 

membership function for output variable are used here in this study. Subtractive clustering is 

also employed to determine both fuzzy if-then rules and membership functions parameters. 

PSO is also applied here to optimize neighborhood radius (ra) in subtractive clustering. A 

range between 0.15 and 0.3 is considered for variations of ra in ANFIS networks. Stopping 

criteria in training networks is to reduce model error for check data considering the training 

duration of network. In other words, cluster radius is chosen using PSO so that model mean 

square error meets its lowest value as evaluating the check data. This will result in selecting 

the most appropriate cluster radius for forming an FIS and avoiding overfitting of the 

network. The check records are the ones for which the least error is occurred before 

overfitting.  

Generally, generation of near-field pulse-like ground motion consists of two parts; the 

first part is to generate high-frequency nonpulse-type Boore and Atkinson compatible 

artificial record, and the second is to superimpose long-period directivity pulse. MATLAB 

software is used for coding each section. After training the networks, providing PCA 

coefficients of the response spectra as input of the networks, one can obtain wavelet packet 

coefficients of the artificial records in any decomposition level for which they are trained. 

Then, by applying inverse wavelet packet transform on the coefficients, the artificial record 

is obtained. To improve the results, the synthetic record is decomposed again using discrete 

wavelet transform and the detail coefficients for the jth level are modified [41 and 42], that 

is: 

 

𝑐𝐷𝑗
𝑀𝑜𝑑 = 𝑐𝐷𝑗 ×

∫ 𝑃𝑆𝑉(𝑇)𝑇𝑎𝑟𝑑𝑡
𝑇2𝑗

𝑇1𝑗

∫ 𝑃𝑆𝑉(𝑇)𝐶𝑎𝑙𝑐𝑑𝑡
𝑇2𝑗

𝑇1𝑗

 (27) 

𝑇1𝑗 = 2𝑗∆𝑡,   𝑇2𝑗 = 2𝑗+1∆𝑡 (28) 

 

where T1j and T2j are the period range of detail coefficient in the jth level of DWT and ∆t is 

the time step of ag(t). PSV(T)Tar is the target pseudo-velocity response spectrum and 

PSV(T)Calc is the calculated pseudo-velocity response spectrum of artificial record. Ultimate 

spectrum compatible artificial accelerogram is obtained by applying IDWT. Eventually, 

final near-fault pulse-like ground motion is obtained by superimposing pulse on the 

previously generated accelerogram in a way that there is a good compatibility between 

Rupakhety [38] near-field attenuation spectrum and final generated near-fault pulse-like 

record. As mentioned earlier, two approaches are taken including: (i) using scaling models 

and (ii) using PSO to determine the parameters of pulse model. 

Accordingly, the efficiency of the trained networks using accelerograms belonging to the 

train and check data set is validated. For first level of wavelet packet decomposition, Figs. 8 

and 9 show the test of the network for a record from the train data set and one from the 

check data set, respectively. A complete compatibility between the spectra and 

accelerograms of the generated records and the original one can be seen in Fig. 8 and a 

sensible compatibility is obtained for records from check data as shown in Fig. 9. Fig. 10 

shows the generated spectrum compatible non-pulse type records in all three levels and their 

response spectra for an earthquake with Mw=6.7, r=10 km, Vs30=280 m/s and fault type=rv. 

The generated pulse-like record by networks trained for the first wavelet level with 
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Mw=6.7, r=10 km, Vs30=280 m/s and fault type=rv, and associated velocity pulse of Type 1 

with optimized parameters and its response spectra before and after pulse addition are shown 

in Fig. 11. In this example, there is a poor compatibility when using the scaling models, so 

pulse parameters are optimized by PSO to gain a spectrum compatible artificial record. To 

determine pulse parameters like amplitude, period and time of occurrence by PSO, a range is 

defined for each parameter considering the original extracted velocity pulses' parameters in 

this study. Spectrum compatibility is the ultimate goal followed in choosing an arbitrary 

pulse parameter in this method. 

The generated pulse-like records with Mw=6.7, r=10 km, Vs30=280 m/s and fault type=rv 

for three levels of WP decomposition using scaling models or PSO to determine parameters 

of pulses of Type 1 and 2, are shown in Figs. 12, 13, 14, 15 and 16. 

 

 

5. CONCLUSIONS 
 

In this study, an alternative method based on wavelet analysis, neuro-fuzzy networks, PSO 

and PCA is developed to generated near-fault pulse-like ground motions. First, directivity 

pulses, known as the most important characteristic of near-fault ground motions, are 

extracted. It was noticed that the Boore and Atkinson [36] prediction model resembles the 

spectra of the residual records, therefore, first nonpulse-type ground motions are simulated 

using learning abilities of ANFIS networks and multi-resolution wavelet packet transform to 

expand the relationship between PCA coefficients of the response spectra and each points of 

wavelet packet coefficients. An illustrative example using 23 near-fault records was shown 

in which good results of spectrum compatibility for the generated nonpulse-type records was 

obtained. At the end, directivity pulse models were used to generate final near-fault pulse-

like ground motion which was compatible with Rupakhety near-fault model. Except for the 

records and their response spectra, nothing else is needed in this method to produce near-

fault records. 

 

 
Figure 8. Comparison of original and generated records belong to train set (1979 Imperial 

Valley-06, Brawley Airport): (a) Records, (b) Response spectra 
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Figure 9. Comparison of original and generated records belong to check data set (Whittier 

Narrows-01 1987, LB - Orange Ave): (a) Records, (b) Response spectra 

 

 
Fig. 10. (a) Generated non-pulse type ground motion for three levels, (b) Response spectra 

 

 
Figure 11. (a) Generated pulse-like ground motion for level 1 using PSO and pulse Type 1, (b) 

Response spectra 
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Figure 12. (a) Generated pulse-like ground motion for level 1 using scaling models and pulse 

Type 2, (b) Response spectra 

 

 
Figure 13. (a) Generated pulse-like ground motion for level 2 using PSO and pulse Type 1, (b) 

Response spectra 

 

 
Figure 14. (a) Generated pulse-like ground motion for level 2 using scaling models and pulse 

Type 2, (b) Response spectra 

 

 
Figure 15. (a) Generated pulse-like ground motion for level 3 using scaling models and pulse 

Type 1, (b) Response spectra 
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Figure 16. (a): Generated pulse-like ground motion for level 3 using PSO and pulse Type 2, (b): 

Response spectra 
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APPENDIX 
 

See Table A1. 

 
Table A1: Near-fault records used in this study 

# Event, Year, Station Mw 

Joyner-

Boore 

Dist. (km) 

Vs30 

(m/s) 
PI 

Dominant 

Fourier period 

of pulse 

Extracted 

pulse 

types 

1 Imperial Valley-06, 1979, Agrarias 6.5 0.00 275 1.00 2.16 1 

2 
Imperial Valley-06, 1979, Brawley 

Airport 
6.5 8.54 209 0.87 3.72 - 5.85 2 and 2 

3 
Imperial Valley-06, 1979, EC County 

Center FF 
6.5 7.31 192 0.99 4.55 2 

4 
Imperial Valley-06, 1979, El Centro 

Array #10 
6.5 6.17 203 0.98 6.83 - 5.12 1 and 2 

5 
Imperial Valley-06, 1979, El Centro 

Array #3 
6.5 10.79 163 1.00 5.12 1 

6 
Imperial Valley-06, 1979, El Centro 

Array #4 
6.5 4.90 209 1.00 4.55 2 

7 
Imperial Valley-06, 1979, El Centro 

Array #5 
6.5 1.76 206 1.00 4.10 2 
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8 
Imperial Valley-06, 1979, El Centro 

Array #6 
6.5 0.00 203 1.00 4.10 2 

9 
Imperial Valley-06, 1979, Holtville 

Post Office 
6.5 5.51 203 1.00 4.55 1 

10 
Westmorland, 1981, Parachute Test 

Site 
5.9 16.54 349 0.76 5.85 1 

11 
Taiwan SMART1(40), 1986, 

SMART1 C00 
6.3 

 
274 0.82 1.52 1 

12 
Taiwan SMART1(40), 1986, 

SMART1 M07 
6.3 

 
274 0.99 1.52 1 

13 
Whittier Narrows-01, 1987, Downey - 

Co Maint Bldg 
6.0 14.95 272 0.98 0.91 - 1.78 1 and 2 

14 
Whittier Narrows-01, 1987, LB - 

Orange Ave 
6.0 19.80 270 0.99 0.93 1 

15 
Superstition Hills-02, 1987, Parachute 

Test Site 
6.5 0.95 349 0.85 2.41 1 

16 Loma Prieta, 1989, Gilroy Array #2 6.9 10.38 271 0.76 1.64 1 

17 Erzican, Turkey, 1992, Erzincan 6.7 0.00 275 0.99 2.56 1 

18 Landers, 1992, Barstow 7.3 34.86 371 0.98 8.19 1 

19 Landers, 1992, Yermo Fire Station 7.3 23.62 354 1.00 7.45 1 

20 
Northridge-01, 1994, Newhall - W 

Pico Canyon Rd. 
6.7 2.11 286 0.99 3.15 2 

21 
Northridge-01, 1994, Sylmar - 

Converter Sta 
6.7 0.00 251 0.87 1.79 - 3.57 1 and 1 

22 
Northridge-01, 1994, Sylmar - 

Converter Sta East 
6.7 0.00 371 1.00 3.72 - 1.52 1 and 1 

23 Kobe, Japan, 1995, Takatori 6.9 1.46 256 0.72 2.28 1 

24 Northwest China-03, 1997, Jiashi 6.1 
 

274 1.00 1.67 1 

25 Chi-Chi, Taiwan-06, 1999, CHY101 6.3 34.55 259 0.70 2.56 1 

 


