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ABSTRACT 
 

One of the most important problems discussed recently in structural engineering is the 

structural reliability analysis considering uncertainties. To have an efficient optimization 

process for designing a safe structure, firstly it is required to study the effects of 

uncertainties on the seismic performance of structure and then incorporate these effects on 

the optimization process. In this study, a new procedure developed for incorporating two 

important sources of uncertainties in design optimization process of steel moment resisting 

frames, is proposed. The first source is related to the connection parameter uncertainties and 

the second one to seismic demand uncertainty. Additionally Mont Carlo (MC) simulation 

and a variance reduction technique (VRT) are utilized to deal with uncertainties and to 

reduce the corresponding computational cost. In the proposed procedure two design 

objectives are considered, which are structural weight and collapse prevention reliability 

index for a moment resisting frame in such a way that leads to a set of optimum designs with 

minimum weight and less possible amounts of sensitivity to connection parameters 

uncertainties and spectral acceleration uncertainty as seismic demand variation. 

Additionally, in this procedure the reliability index is computed considering all FEMA-356 

performance acceptance criteria, the approach that has never been investigated in other 

studies. The efficiency of this approach is illustrated by exhibiting a set of optimum designs, 

in the form of both objective values and investigating nonlinear behavior of optimum 

designs compared with non-optimum designs. This procedure is introduced in this paper 

with emphasize on the collapse limit state and applying pushover analysis for studying the 

nonlinear behavior of structural elements. 
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1. INTRODUCTION 
 

In conventional structural design optimization, usually formulated under deterministic 

design parameters, stochastic nature and uncertainty of governing design parameters are 

considered through several safety factors incorporated into the optimum design problem as 

constraints. In other words, safety concerns are mitigated by compliance to the design 

standards (e.g. ASCE7 [1]) and the economic part of the design problem is assumed to be 

only related to the initial construction cost. Consequently, because of complexity of the 

mentioned design optimization problem and unavoidable limitations on the design budgets 

and the designers’ effort, the final selected design is likely not to be the most optimal in its 

cost and safety. In order to find more reliable and safe designs, in recent decades non-

deterministic performance measures are increasingly being taken into consideration in many 

engineering design problems while involve various reliability requirements, (e.g. FEMA 350 

[2]). Mainly, this concept has been introduced as Performance-Based Design (PBD) in order 

to increase the safety against natural hazards, especially seismic hazards, to make them 

having a predictable and reliable performance. 

In other words, in this approach the structures should be able to resist earthquakes in a 

quantifiable manner and to preset levels of desired possible damage. Therefore, according to 

PBD approach, seismic structural design is that a structure should meet performance-based 

objectives for a pre-defined hazard levels. The problem of incorporating different of kind of 

uncertainties in the PBD design process has attracted the attention of many researchers in 

recent years. Many of parameters that affect design process including aleatory uncertainties 

related to their uncertain nature. Moreover, epistemic uncertainties related to lack of 

sufficient knowledge, engineering and manufacturing errors are continuously involved in 

theoretical and executive problems [3, 4]. In order to precisely deal with uncertainties, it is 

necessary to know different types of uncertainties, how they affect seismic performance of 

structure and the amount of these effectiveness. It should be taken an efficient approach to 

incorporate important sources of uncertainties in design process, especially when a set of 

optimum designs is desired. For this purpose, suitable quantitative criteria should be 

proposed from the sensitivity of designs to different sources of uncertainties. By applying 

this measure, it will be possible to design a building with less sensitivity to discussed 

uncertainties. In this context, several studies have been proposed about studying structures 

based on reliability analysis. The common point among all of these reliability studies is the 

necessity of probabilistic reliability analysis with simulating nonlinear behavior of structures 

under the effect of uncertain parameters. In this way, sensitivity analysis is considered as 

one of the applicable strategies for studying the effectiveness rate of uncertain parameters on 

seismic response of structure. According to this approach, the effectiveness rate of each 

parameter on the seismic response of structure will be evaluated for its various amounts 

while others are taken to be constantly. Several researchers like Esteva and Ruiz [5], Ibarra 

and Krawinkler [6] and Aslani [7] have used sensitivity analyses in different reliability 

studies. They have recognized and used most effective parameters for nonlinear analysis of 

structure through this approach. Among the several reliability methods proposed in 

literature, First order second moment (FOSM) and MC are usually known as the most 

applicable methods. Other methods such as First order reliability method (FORM) and 

Second order reliability method (SORM) are utilized more restrictively. FORM and FOSM 
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use linear and quadratic approximations for limit state function g(x) respectively. In SORM, 

the limit state function g(x) achieved from second order-Taylor expansion about the   = 

g(E[x]), will be used for investigating the structure under the effect of uncertain parameters 

  . There is an important problem in application of FOSM/FORM when g(x) tends to have 

nonlinear behavior around   . In this condition, the obtained approximations do not have 

exact precision and other reliability methods such as SORM and MC can be substituted. It is 

recommended to refer to studies [6,8] as an example of applying FOSM for reliability 

analysis. Haselton [9] combines sensitivity analysis and FOSM for evaluating the effects of 

uncertain variables on seismic response and calculating collapse capacity of a 4-story 

reinforced concrete frame. The other practical method for reliability analyses is MC 

simulation. In general, MC provides a good statistical simulation for probabilistic analysis 

using a sample set of stochastic random variables. These stochastic uniform random 

variables will be produced based on inverse transformation method (ITM) for uncertain 

parameters as for their cumulative distributions [8]. This procedure, if only implemented 

without applying numerical techniques for decreasing variance of stochastic generated 

values, is called as crude Monte Carlo (CMC) which may need much computational effort in 

structural reliability analyses [10]. For solving this problem, one can employ some 

techniques known as VRTs which lead to smaller dispersion in random generated variables. 

In this way, MC simulation can be implemented with a smaller sample set through applying 

VRTs compared with CMC [11, 12]. Among the last studies in literature, we can find an 

example for applying MC in the study of Porter [13] in which this approach is used for 

studying structural damage for non-ductile reinforced frames incorporating some 

uncertainties related to modeling parameters. In another study, Abbie and Liel [14] 

demonstrated that MC computational efforts could be reduced in combination with response 

surface and applying LHS sampling method for generating sample set. Moreover these 

prevalent methods, there are some novel methods for reliability studies in literature like the 

algorithm that introduced by Kaveh and Massoudi [15]. The proposed approach is capable of 

finding a design point by achieving minimum reliability index under the limit state function. 

Additionally, Danesh and Gholizade [16] performed a PBD optimization for three steel 

moment frames by employing four meta heuristic algorithms and they have investigated the 

efficiency of these algorithms by investigating the seismic collapse safety of optimal 

obtained designs. Kaveh and Zolghadr [17] performed a comparative study on meta-

heuristic algorithms for optimal design of truss structures with frequency constraints. 

Gholizade and Fattahi [18] have proposed a novel approach for PBD optimization of steel 

frames using sequential enhanced colliding bodies algorithm. The optimization problem has 

been solved for achieving the minimum total cost defined as summation of initial 

construction cost and seismic damage cost. Ganjavi and Hajirasouliha [19] presented an 

optimum PBD methodology for concentrically steel braced frames based on the concept of 

uniform distribution for shear story drift along the height of building. Mahallati and 

Ghoohani [20] have presented an improved multi-objective evolutionary algorithm for 

optimization of planar steel moment frames. Gholizade and Kamyab [21] performed a PBD 

optimization for steel moment resisting frames by applying four different metaheuristic 

algorithms to minimize the structural weight subjected to inter-story drift ratio constraints. 

Kaveh and Talatahari [22] presented a performance-based optimal seismic design of steel 

frames applying the Ant colony optimization. Kaveh and Laknejadi [23] presented a new 
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framework for multi-objective optimization of large steel structures using genetic algorithm, 

NSGA-II. Kaveh and Fahimi [24,25] presented novel efficient approaches for multi-

objective PBD optimization of steel moment frames applying wavelet analyses procedure 

for reducing the computational burden of time history analysis. Liu and Atamturkter [26] 

proposed a performance based robust design optimization for a steel moment resisting frame 

incorporating ground motion and connection parameters uncertainties. The problem has 

been solved for three objectives of initial cost, average of maximum inter story drift ratios as 

seismic demand measure and standard deviation of maximum inter story drift ratios as safety 

measure. Modal pushover analysis is applied for studying seismic response of structure 

under the effect of uncertainties. Algorithm NSGA-II is applied as optimizer and the results 

are determined as a set of optimum designs called as Pareto front. In another study, Liu and 

Atamturkter [27] solved the problem of optimization for a steel moment frame by 

incorporating spatial variability of connection parameters. The problem has been solved for 

two design objectives of initial cost and reliability index for collapse prevention and both of 

IDA and pushover analyses are employed for studying the effect of spatial variability of 

connection parameters on seismic response of a steel moment resisting frame. Firstly, they 

have used sensitivity analysis to evaluate the effectiveness rates of IK model parameters and 

the results show that among these parameters,    , 
  

   
 ,     and 

  

  
 have more significant 

effects on seismic response of the structure. Then, they have solved the optimization 

problem by incorporating uncertainties related to four effective recommended parameters 

and spatial variability related to these parameters. 

In this paper, we propose a new multi stage procedure for optimal Performance-Based 

Design of steel moment frames considering two sources of uncertainties. This procedure 

consists of as a bi-objective optimization problem, solved by well-known NSGA-II [28], 

while structural weight and reliability index are two contradicting objectives of this problem. 

Nonlinear static analysis, MC simulation, VRT and performance acceptance check 

according to FEMA-356 are four employed sub-steps with the aim of evaluation of 

structures subjected to uncertainties.  

This paper is organized as follows. In Sections 2 and 3, the existing uncertainty in beam-

column connections and seismic load are explained in detail, respectively. The effective 

uncertainties on collapse capacity of steel moment frames are introduced in Section 4 and 

the procedure for incorporating uncertainties in the main optimal design optimization 

process is described with contributing requirements in Section 5. The employed VRT 

method is introduced in Section 6 and a case study and the structure of the proposed PBD 

optimal design procedure are presented in Sections 7 and 8. Finally, in Section 9 a detailed 

discussion on the obtained results and the accuracy and efficiency of the proposed procedure 

is presented. Section 10 is the closure of this paper. 

 

 

2. CONNECTION PARAMETERS UNCERTAINTY 
 

In order to investigate the CP (collapse prevention) performance level of structures due to 

the seismic action, the nonlinear nature of structural response should be modeled correctly 

and the important sources of uncertainties related to modeling parameters shall be 
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considered in analysis and design process. Uncertainties related to damping, structural mass 

and strength of materials have relatively low impact on dispersion of structural responses for 

CP performance level of buildings [29]. Ibarra and Krawinkler [6] have described that the 

connection parameters uncertainties can have a significant effect on evaluating the collapse 

performance of buildings. These parameters determined usually based on experiments and 

suggested statistical values, are used for defining the relation of force (moment) – 

deformation (rotation) in modeling nonlinear behavior of structural elements. In present 

study, the Ibarra-Krawinkler (I-K) model [30, 31] is utilized for studying the behavior of 

connection parameters. This model forms the basis of modeling deterioration of structural 

elements. I-K model is described based on three resistance parameters, three deformation 

parameters and one cyclic deterioration parameter. Resistance parameters are effective yield 

strength (  ,   ), maximum plastic strength (  ,   ) and residual strength (  ,   ) while 

deformation parameters includes of yield deformations (  ,   ), ultimate deformation (  , 

  ) and capping deformation (  ,   ). Amounts of deformation in the range of yielding and 

capping points is called as pre-capping plastic deformation (  ,   ) and post-capping plastic 

deformation (   ,    ) is defined as deformation in the range of capping point and ultimate 

deformation. Consequently, this model determines the resistance boundaries of structural 

elements using backbone curve represented in Fig. 1 and describes hysteretic behavior of 

elements applying a set of rules among these deformation boundaries [6]. Among all 

existing hysteretic deterioration models, bilinear, peak oriented and pinching models are the 

most widely used models. Backbone curve that describes monotonic response of structural 

components is the same part among all of these hysteretic models. As shown in Fig. 1, this 

curve consists of four parts of elastic, hardening, post capping and residual strength 

branches. The boundaries among these branches is determined by yielding deformation (  , 
  ), maximum plastic deformation (  ,   ) and ultimate deformation (  ,   ), respectively. 

 

 
Figure 1. Uniform backbone curve according to modified I-K model 

 

One challenge from modeling connection parameters is related to uncertainty of their 

values. Lignos and Krawinkler have described this uncertainty in [32]. Variations of these 
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parameters are presented in their study after investigating several factors like beam depth (d) 

and ratios of shear span to beam depth (
 

 
), beam length to section gyration radius (

  

  
), width 

to thickness of the beam’s flange (
  

   
) and depth to thickness of the beam’s web (

 

  
). They 

have presented the probability distribution of connection parameters and have determined 

values of mean and standard deviation for each of corresponding cumulative distribution 

functions after experimental study on 300 steel W sections. These distributions, which are 

applied for modeling connection parameters in this study, are visible in Table 1. In addition 

to the principal connection parameters introduced in this section, Ibarra & Krawinkler [6] 

have employed other parameters including pre-capping stiffness deterioration (  ), post-

capping stiffness deterioration (  ) and cyclic deterioration parameters (        ) for 

evaluating the collapse capacity of frame structures under seismic excitations. Parameters    

and    are defined as the slope of backbone curve in strain-hardening and softening 

branches respectively. 

 
Table 1: Distribution properties for uncertain parameters of I-K model 

Parameter Mean Dispersion coefficient Type of distribution 

   0.022 0.270 Log normal 

    0.170 0.350 Log normal 

Λ 1.100 0.440 Log normal 
  

    
 1.170 0.210 Normal 

  

  
 1.110 0.050 Normal 

K 0.400 0.100 Normal 

   55.100 0.120 Normal 

 

 

3. SEISMIC DEMAND UNCERTAINTY 

 

In order to design a safe building for a determined performance level without applying a 

probabilistic approach, it is expected to design the building for the worst-case earthquake 

excitation. For this purpose, designer may be looking for the worst-case earthquake that may 

result from closest faults. For example suppose that the aim is designing a building at a site 

located at point O by distance of    and    from predicted rupture locations on faults A and 

B according to Fig. 2 (       ). By assuming that maximum magnitude earthquakes from 

faults A and B are estimated respectively    and    (       ), the median response 

spectrums predicted from these two earthquakes can be demonstrated as Fig. 3. It can be 

found from comparison between these two median spectrums that maximum spectral 

acceleration can be resulted from fault A for short periods (T   1.3sec) and it can be 

resulted from fault B for long periods (T   1.3sec). In fact, on either side of T=1.3 sec, each 

of these two faults may cause the worst earthquake. This simple example explains obviously 

that it is not possible to determine the worst case earthquake resulting from known faults 

around a site, because of the uncertain seismic properties, especially uncertainty related to 
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surface wave frequency produced by ground motion shakes. Therefore, it can be concluded 

that uncertainty related to frequency content of earthquakes can lead to a variety in the 

amount of resulted spectral accelerations as a measure of ground motion intensity. Another 

problem associated to seismic demand uncertainties is related to variability in values of 

spectral accelerations recorded from one earthquake. For this reason, median spectrum is 

usually employed for analysis and design of structures, but we are facing with dispersion in 

spectral accelerations of recorded ground motions around the mean spectrum in reality. Fig. 

4 illustrates variation in the records of 1999 earthquake in Chi-Chi Taiwan. Campbell and 

Bozorgnia [33], Abrahamson [34] and Wang [35] have proposed normal distribution for Ln 

(  ) in different studies, for modeling this variation related to recorded spectral 

accelerations. 

 

 
Figure 2. Map view of a structure adjacent to faults A and B on a circular domain 

 

 
Figure 3. Two predicted response spectrums from two probable earthquakes resulted from faults 

A and B 
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Figure 4. Spectral accelerations recorded from the 1999 Chi-Chi, Taiwan earthquake [36] 

 

 

4. EFFECTIVE UNCERTAINTIES ON COLLAPSE CAPACITY OF 

MOMENT RESISTING FRAME 
 

Ibarra and Krawinkler have investigated all parameters affecting the collapse capacity of 

structures in a comprehensive study and they have studied the effects of these uncertainties 

on collapse capacity of structures [6]. According to their study, the most important factors 

are subdivided into record-to-record variability, connection and deterioration parameters 

uncertainties, and P-  effects. They have demonstrated the contribution rates of first two 

categories for a single degree of freedom system in their study according to Fig. 5. This 

result is for the case of no correlation included among deterioration parameters. According 

to [6], post capping stiffness deterioration (  ) has the most influence on collapse capacity 

of structures among the deterioration parameters, especially for medium fundamental 

periods (0.5sec T 2sec). The influence of this uncertain parameter in creating dispersion is 

more related to when it has small values in range of 0.1    0.3. In this condition, for multi 

degree of freedom (MDOF) systems, collapse capacity decreases even to 30% with respect 

to the case of   =0.1, and for    0.3 differences will be smaller [6]. After this parameter, 

ductility capacity has more effect in scattering on collapse capacity especially for medium 

periods. For example it can be more than 30% decrease in collapse capacity from value of 6 

to 2 for ratio of 
  

  
 as ductility capacity. Cyclic deterioration (CD) is the last factor related to 

I-K model that can affect the collapse capacity. The collapse capacity generally decreases 

for rapid rates of CD and its effect is usually smaller for long period structures. 

Nevertheless, generally, the effect of CD is less than the effects of post capping stiffness and 

ductility capacity for all of period values. 
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Figure 5. Contribution of uncertainties on variation of collapse capacity for a SDOF system [6] 

 

 

5. Procedure of incorporating uncertainties 

 

One of the two design objectives considered for optimization process in this study, is 

defined based on reliability index for collapse prevention performance level. Therefore, it is 

necessary to consider variations related to effective sources of uncertainties mentioned in 

previous sections to have a set of robust designs with less possible amounts of dependency 

to these variations. For this purpose, an appropriate approach should be chosen for modeling 

nonlinear behavior of beam-column elements in such a way that describes nonlinear 

behavior of elements based on I-K model. In this study, pushover analysis is performed in 

OpenSees [37] for nonlinear structural analysis during the optimization procedure of a 2-D 

moment resisting frame for collapse prevention performance level. Variations related to 

connection parameters of   ,     and 
  

  
 and three deterioration parameters of   , 

  

  
 and CD 

(        ) from I-K model are considered for incorporating variations of uncertain parameters 

which are needed for defining features of hypothetical springs assigned to beam-column 

elements for modeling concentrated plasticity. Therefore, the cumulative distribution 

functions (CDFs) and statistical properties of aforementioned uncertain parameters are 

needed to perform MC simulation. These properties for connection parameters   ,     and 
  

  
 are in access from results of Liu’s study[27] according to Table 1. For deterioration 

parameters   , 
  

  
 and CD, the assumption of lognormal distribution can be used by Ln( )= 

0.6 and the mean values for these parameters are taken equal to values of    
= 0.1,    

  

=2, 

        =100 according to Ref. [6]. 

For incorporating ground motion uncertainty in optimization process, the procedure 

proposed by Abrahamson [34] is applied for determining standard deviation of Ln(  ). 

Then,         is obtained equal to 0.8g According to this procedure, the mean value for    is 

taken equal to 1.614g based on FEMA-356 instructions [38] for estimating spectral 

acceleration of case study frame, illustrated in Fig. 6. Additionally, for this case study 2% 

critical damping and site class A are other assumptions. MC simulation is applied for 

reliability analysis of structure and stochastic values are produced using inverse 
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transformation method (ITM) by having CDFs of uncertain parameters. In this study, 

variance reduction techniques (Antithetic variables and Control variables techniques 

[11,12]) is used in procedure of producing sample set for parameters    and CD (        ), 

because these uncertain parameters have a larger range of variations compared with others. 

Consequently, applying VRTs in ITM procedure helps to produce stochastic values in more 

realistic range of variations and improving performance of MC simulation. A summary 

description about these numerical techniques is presented in the following sections. 

 

 

6. VARIANCE REDUCTION TECHNIQUES 
 

Initial approach in MC simulation is estimating the expectation of variables based on 

corresponding probability density functions (PDFs) by producing a sample set of stochastic 

values for uncertain parameters. The process consists of three initial steps including: 1) 

Determining the type of CDF for input variables, 2) Producing a sample set of stochastic 

numbers for each of variables based on corresponding CDFs and 3) Estimating the 

expectation of variables using stochastic generated sample sets. To have more authentic 

results from MC simulation, it is needed to take a large sample set for each of stochastic 

variables in second step of simulation. VRTs are numerical techniques that could be applied 

for solving this problem and decreasing computational costs of simulation. In this study, we 

use combination of Control variables (CV) and Antithetic variables (AV) [11,12] for 

improving performance of MC simulation. 

 

6.1 Antithetic variables 

Assuming that X=               is a vector of stochastic values produced by ITM for 

uncertain parameter  , while the aim of simulation is estimating   = E(H(X)). If q= 
     

 
 

(i j) is taken as an unbiased estimator of   , following expression can be written for var(q): 
 

Var(q)= 
 

 
(var(    + var(   + 2cov(  ,   )) (1) 

 

According to equation 1, when cov(  ,  ) is a negative value, variance of q is smaller 

than variance of each parameters    and   . This variance reduction among input variables of 

simulation leads to more realistic outputs. 

 

6.2 Control variables 

This method improves performance of MC simulation by employing one or more than one 

auxiliary variable called as control variable in which expectation of this parameter is a 

known value. Assuming that x is a vector of stochastic values produced by ITM for 

uncertain parameter x and the aim of simulation is estimating   = E(H(X)). Considering y as 

control variable and E(y)=e, q is an unbiased estimator according to following expression for 

the state of single control variable: 
 

q =   -  (x-e) (2) 
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  = - 
         

      
 (3) 

 

Minimum variance for q is achieved equal to equation 4 from applying   according to 

equation 3. 
 

Var(q)= (1-  ) var(  ) (4) 
 

where   is correlation coefficient between    and y. Applying this approach improves 

performance of MC simulation by using control variable y without any intervention in 

producing stochastic values in ITM procedure. 

 

 

7. CASE STUDY 
 

The case study considered for implementing optimization process is a 4 story – 4 bay steel 

moment resisting frame according to Fig. 6. The gravity load imposed on all 4 stories 

includes of live load    = 50.25 lb/in and dead load    = 60 lb/in. According to Fig. 6, the 

elements of this frame are subdivided into eight categories. Therefore, eight section numbers 

should be assigned to beam-column elements in each cycle of optimization process. Section 

numbers are taken from an initial list of W Standard AISC sections presented in Table 2. 
 

 
Figure 6. Elevation view of case study frame 

 

Table 2: List of input W sections 

No Section No Section 

1         11 W40 503 

2           12 2 W44 230 
3 2 W36 395 13 W36 529 

4 2 W44 290 14 2 W40 249 

5 2 W36 361 15 W40 431 
6 2 W40 324 16 2 W40 215 

7 W36 652 17 W40 397 

8 W40 593 18 W44 335 

9 2 W36 330 19 W40 392 
10 2 W40 277 20 W40 372 
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8. OPTIMIZATION PROCESS 
 

The optimization process is designed for solving problem with two objectives of weight and 

reliability index ( ) which is demonstrated by the flowchart as in Fig. 7. This optimization 

process is set in form of a reference program in MATLAB [39]. As shown in this flowchart, 

the optimization process designed for this problem consists of seven steps. After introducing 

a list of input W section numbers to program, one set of section numbers beside together 

create an initial design in first step. Static analysis is done for this initial design by OpenSees 

in second step and control of designs to fulfill the requirements of AISC 341-16 [40]. In this 

step an auxiliary constraint C is applied according to equation 5 for controlling elements 

based on instruction codes:  

 

C=            
                  (5) 

 

If the value of C becomes anything except zero, this investigated design will not be used 

in the next steps and the process returns to first step with new set of section numbers. If the 

value of C becomes zero the third step will be done by producing stochastic values for 

uncertain parameters based on their cumulative distribution functions (CDFs) using ITM in 

MC simulation. After assigning these values to uncertain parameters, several designs with 

the same set of section numbers and different inelastic behavior are formed. In the next step, 

OpenSees is used for second time in each cycle of process and nonlinear behavior of 

structure for each of designs is investigated by pushover analysis. Then, designs will be 

controlled by comparing results of analysis with allowable values based on FEMA-356 in 

the fifth step and the sixth step includes calculating the reliability index for each of 

acceptable designs based on the ratio of seismic capacity to demands resulted from pushover 

analysis in each cycle. In the seventh step, values for both objective designs are available. 

Eventually the values of weights and reliability indexes arrives to NSGA-II and the 

optimization will be performed based on values of weight and ( ) and responses goes to the 

optimum designs using parent – offspring technique after several cycles. 

 

8.1 Modeling nonlinear behavior of elements 

As previously mentioned, pushover analysis is performed in this study for investigating 

nonlinear behavior of structural elements. With this aim, the element type of 

“beamwithhinge” is employed as one of the prevalent approaches for modeling nonlinear 

behavior of elements in OpenSees. This approach is applicable for modeling beam-column 

elements with concentrated plasticity distribution in both ends of elements and the middle 

part is modeled by elastic behavior. The values of connection parameters and deterioration 

parameters uncertainties should be assigned to hypothetical rotational springs defined by 

modified I-K model specified at the distance of plasticity concentrated region in OpenSees. 

These input variables are assigned to elements after producing by ITM in MATLAB. 
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Figure 7. Flowchart of optimization process 

 

8.2 Reliability index 

The process explained in previous section for modeling nonlinear behavior of structure is set 

in such a way that 50 stochastic values for uncertain parameters are produced in each cycle 

of program. Thus, 50 offspring designs are produced from each of initial parent designs 

which are formed as a set of W sections chosen by program in each simulation. Thus, if the 

population size of sample set is taken equal to n for each cycle of optimization, (50 n) 

pushover analyses will be performed in this cycle. Given that the range of variations related 

to the connection and deterioration parameters are expected to be different with the range of 
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spectral acceleration variations, three sets of reliability indexes are computed by limit state 

function defined as equation 6. In this function, R & S denote seismic capacity and demands 

respectively. The reliability index (   is defined as Cornell reliability index based on 

equation 7, for each of initial designs in each cycle of the optimization process according to 

flowchart of Fig. 8. 

 

g(R,S)= ln(R/S) (6) 

 = 
  

  
 (7) 

 

 
Figure 8. Flowchart of calculating reliability index for designs 1, 2, …, 50 in each cycle of 

optimization 

 

According to above relations, the limit state function (g) is defined by ratio of R/S. R is 

determined as seismic capacity of elements according to provisions of FEMA-356 and S is 

determined based on pushover analysis for structural elements. Also,   and   are defined as 

mean and standard deviation of limit state function respectively. The first and second 

reliability indexes (  ,   ) are determined based on the performance of force-control and 

deformation-control actions respectively, in the case of incorporating connection and 

deterioration parameters uncertainties. The third reliability index (  ) is considered for 
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deformation-control actions in the case of incorporating variations of    as seismic demand 

uncertainty. These variations are considered according to lognormal distribution which is 

explained in section 5 and affect directly the target displacement of pushover analysis 

according to following equations [38]. 

 

  =          
  

 

    g (8) 

  =   
  

  
 (9) 

 

where   ,   ,   ,    are modification factors determined 1.25, 1, 1, 1 respectively for case 

study frame according to FEMA-356[38] instructions. Also, effective fundamental period 

(  ) could be determined from equation 9 in which    denotes elastic fundamental period of 

structure and   ,    denote elastic and effective lateral stiffness of building respectively. 

Therefore, variations of    affect directly values of target displacement and the analysis’ 

step in which force-control and deformation-control elements should be controlled based on 

provisions [38]. Regarding the point that the vast majority of elements are categorized as 

deformation control elements, the reliability index of    is utilized for evaluating reliability 

of generated designs by MC against seismic demand uncertainty. 

It should be mentioned that in this study, the optimization process is set up in such a way 

that    has just a controller role for controlling the performance of force-control elements in 

each structure with this description that if     , the investigated design will be considered 

unacceptable for recommending in the optimization process but, for acceptable designs 

(  >1), the process will be continued by determining a new reliability index (β) from 

integrating    and    using SRSS. This final reliability index is used as one of the two 

objectives alongside the weight of structure for optimizing solutions. 

 

 

9. RESULTS 
 

9.1 Design objective changes 

By implementing the optimization process for the case study displayed in Fig. 7, optimum 

design solutions resulted from parent-offspring technique are obtained for each iteration of 

optimization process according to steps outlined in Fig. 8 and these solutions are used as 

input designs for next iteration of process. It is obvious, as we have more iterations, the 

results are more exact. However, we have similar solutions after several iterations of the 

algorithm that means differences between design objectives are very small and desired 

convergence is achieved. In this study, after implementing 100 iterations of process for the 

case study, this convergence is achieved and the performance of optimization process is as 

shown in Figs. 9 and 10. 
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Figure 9. The obtained mean values of the deign objectives in different steps of the optimization 

process 

 

 
Figure 10. The obtained variance of reliability indexes in different steps of the optimization 

process 

 

It can be seen that the changing process of mean values of design objectives (  ,   ) 

relative to each other in Fig. 9. Moreover, the changing process of variance of reliability 

index (  ) during the optimization process is demonstrated in Fig. 10. These changes are 

indicating that the mean values of weights (initial cost) and reliability indexes against 

collapse occurrence is improved in direction of optimum values. In other words, the 

proposed process in this study shows a proper performance for increasing the reliability 

indexes and decreasing weights (initial costs) of initial designs after 100 iterations. 

According to Table 3 the mean value of reliability indexes has maximum increment of 

41.4% in the iteration 75 relative to iteration 1 with   =3.06. Additionally, the mean value 

of weights (initial costs) has maximum decrement of 19.4% in iteration 100 relative to 

iteration 1 with   =477.95 ton. In other iterations, as it is obvious from Fig. 10, the 

procedure of increasing β and decreasing weight is apparently visible from right to left. 
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Table 3: Mean and standard deviation values of design objectives in various iterations 

No. Iteration 
%decrease of 

   
%increase of    Var(β) 

Mean value 

of β(  ) 
Mean value of 

weight(  ) 

1 - - 1.42 3.06 477.95 
70 17.0 39.1 0.77 4.26 394.90 

75 18.0 41.4 0.78 4.33 392.04 

80 19.0 37.0 0.83 4.21 387.10 

85 19.3 36.0 0.86 4.16 385.64 
90 19.4 35.0 0.81 4.14 385.19 

95 19.4 35.0 0.87 4.13 385.05 

100 19.4 36.2 0.85 4.17 385.00 

 

To have a better understanding from performance of optimization process for improving 

design objectives, the values of these parameters are shown for initial and obtained designs 

of iterations 1, 75, 85 and 100 in Figs. 11, 12, 13 and 14 respectively. In addition, some of 

the optimum designs has been introduced with β>4, from 100th iteration of optimization 

process in Table 4. 

 

  

Figure 11. Values of design objectives for 

iteration 1 

Figure 12. Values of design objectives for 

iteration 75 

  
Figure 13. Values of design objectives for 

iteration 85 

Figure 14. Values of design objectives for 

iteration 100 
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Table 4: Properties of some optimum designs with β>4 

No. Section 

Design β Weight(ton)                         

A 5.56 400.67 18 18 18 18 10 4 10 2 
B .19 396.91 18 18 18 18 10 8 4 3 

C 5 390.46 20 18 20 18 8 10 10 10 

D 5.05 393.62 18 20 18 17 10 4 10 10 

E 5.01 387.18 18 18 20 18 8 10 8 10 
F 4.87 391.07 18 18 20 18 10 6 8 10 

G 4.74 388.60 18 18 18 18 8 8 10 2 

H 4.46 392.27 18 18 18 18 4 6 10 10 
I 4.34 384.39 18 18 18 18 7 10 10 4 

J 4.21 392.00 18 18 18 20 4 10 6 4 

 

9.2 Seismic responses of optimum designs 

Since we have set the reliability index based on the capacity to demand deformation ratio of 

elements, it is expected to have a sensible improvement in performance of structural 

elements belong to the optimum designs. In this regard, Table 5 presents a comparative 

evaluation among three optimum designs (A, B, J) related to the iteration 100 and two non-

optimum designs related to the iteration 1 (K,L). Moreover, the force-displacement curves 

for designs A, B, K, L for six series of different values of connection parameters 

uncertainties are presented in Figs. 15, 16, 17, 18, respectively. Values of uncertain 

parameters are determined for each case according to Table 6. These figures are well 

representing the sensitivity of seismic responses of optimum designs (A, B) and non-

optimum designs (K, L) deal with variations of uncertain variables.  
 

Table 5: Features of three optimum designs related to iteration 100 and two non-optimum 

designs related to iteration 1 

Design β Weight(ton)  
 
        

        
 Var( )    

A 5.56 400.67 1.865 1.13        0.0153 

B 5.19 396.91 1.335 1.03        0.0267 

J 5.05 390.46 2.134 1.00        0.0139 

K 3.23 433.17 2.217 1.59        0.0151 

L 2.38 476.60 5.054 3.03       0.0065 

 

Table 6: Six different series of connection parameters values 

Series 
  

  
                    

 1.110 0.170 0.022 -0.100 100.000 

 0.965 0.074 0.013 -0.088 82.855 

 1.041 0.120 0.017 -0.094 91.457 
 1.160 0.203 0.028 -0.116 110.346 

 1.208 0.257 0.032 -0.123 121.669 

 1.258 0.291 0.037 -0.136 131.587 
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Figure 15. Force-displacement curves for 

optimum design A under the effect of uncertain 

variations 

Figure 16. Force-displacement curves for 

optimum design B under the effect of 

uncertain variations 

  
Figure 17. Force-displacement curves for non-
optimum design K under the effect of uncertain 

variations 

Figure 18. Force-displacement curves for 
non-optimum design L under the effect of 

uncertain variations 

 

9.3 Evaluating results 

In order to evaluate the results of this study, we can compare these results with those of 

paper [27]. PBD optimization has been performed in [27] by incorporating spatial variability 

of connection parameters. The optimization problem has been solved by using algorithm 

NSGA-II for a steel moment-resisting frame with the same geometrical dimensions, the 

same modulus of elasticity and the same mechanical strength of steel in this paper, with a 

difference that gravity loads imposed on floors of frame in [27] is limited to the weight of 

beam-columns sections. Researchers utilized inter story drift ratio as constraints for 

reliability analysis and then reliability index is calculated by equation 8. In this relation, SC 

is seismic demand for CP performance level that is taken 5% inter story drift ratio in [27].   

and   are average and standard deviation of logarithm of seismic responses respectively and 
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   relates to ground motion uncertainty that is taken equal to constant value of 0.3 in [27]. 

 

 =
            

      
 

 (8) 

 

By comparing the obtained results of present study and the results of [27] in the state of 

perfectly uncorrelated inter-member relationship, it can be found that weight loss values is 

approximately same and equal to 20% in both studies. But, reliability indexes of optimum 

designs resulted from equation 4 in [27] is distributed in the range of 1 to 2.7 whereas the 

average of reliability indexes in present study in 100th iteration is obtained equal to 4.17. 

Regarding to same essence of reliability indexes and same optimizer utilized in both studies, 

it can be concluded that fulfilling all performance acceptance criteria (for CP performance 

level) mentioned in FEMA-356 instead of considering only acceptance criterion for inter 

story drift ratios and also incorporating ground motion variability more exactly in present 

study, provides accessibility to more safe designs. 

 

 

10. SUMMARY AND CONCLUSIONS 
 

In this paper, a reliability based PBD optimization approach is proposed for designing steel 

moment resisting frames with two design objectives of weight and reliability index against 

collapse performance. The reliability index is introduced in such a way that it could 

incorporate the effect of two important sources of uncertainties including connection 

parameters and seismic demand uncertainties. The optimization problem is solved for a 

moment resisting frame with four stories and four bays. After surveying the obtained results 

from implementing the optimization process described in previous parts, the results of this 

study can be expressed according to following conclusions:  

 It can be deduced from Fig. 9 that despite the existence of few fluctuations related to 

trade off relationship between design objectives, there is an incremental process for 

mean values of reliability indexes and a suitable decreasing trend for mean values of 

initial costs (weights) regarding the first iteration of optimization process. Therefore, 

it can be found from these changing processes that the optimization is successful from 

the aspect of improving mean values of design objectives. 

 In addition to the ascending trend in mean values of reliability indexes, the 

optimization process resulted 41% decrease in variance of reliability indexes at 

iteration 100 compared to the first iteration of optimization process. These procedures 

are representing a remarkable reduction in noise effect of uncertainties during the 

optimization process. 

 Output designs obtained from the proposed optimization process provide a wide 

range of suitable designs, whereas all of them satisfy design requirements (according 

to AISC 341-11). Consequently, there is a wide domain of optimal designs to choose 

with certain values of design objectives regarding to various factors like accessibility 

to sections, ease of implementation and the possibility of implementing sectional 

patterns of each design. 
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 Connection parameters uncertainties cause dispersion in seismic response of structure 

especially in high plastic deformations. This dispersion is visible for optimum and 

non-optimum designs in Figs. 15,16,17 and 18. It is obvious from these figures, by 

increasing the values of I-K model parameters given the increasing ductility of beam-

column elements, force-displacement curves tend to have zero and even positive 

slope in inelastic region. This variation in seismic response is accompanied by 

variation of structural element’s deformations. 

 There is a variety in sensitivity of different designs to variation of uncertainties. Even 

a larger dispersion may be found in the force-displacement curve of an optimum 

design compared to a non-optimum design with smaller reliability index, but the 

optimizer recognizes designs with less vulnerability to dispersions. This superiority is 

achieved by employing the reliability index for collapse prevention defined by 

capacity to demand ratio of elements.  

 Unlike the last studies performing PBD optimization based on drift ratios as the limit 

state for evaluating seismic performance of structure, the proposed approach which is 

based on deformations of all beam-column elements, provides a more exact 

evaluation from responses of structure in high plastic deformations under seismic 

excitations. 
According to the results of this study, the capacity to demand ratio has a descending 

process for optimum designs compared to the non-optimum designs with smaller reliability 

indexes, however the optimum designs tolerate larger lateral displacements. Therefore, there 

is a significant superiority in performance of optimum designs from the aspect of tolerating 

non-linear deformations before collapse occurrence. 
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