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ABSTRACT 
 

The present study proposes a hybrid of the piecewise constant level set (PCLS) method and 

isogeometric analysis (IGA) approach for structural topology optimization. In the proposed 

hybrid method, the discontinuities of PCLS functions is used in order to present the 

geometrical boundary of structure. Additive Operator Splitting (AOS) scheme is also 

considered for solving the Lagrange equations in the optimization problem subjected to 

some constraints. For reducing the computational cost of the PCLS method, the Merriman–

Bence–Osher (MBO) type of projection scheme is applied. In the optimization process, the 

geometry of structures is described using the Non–Uniform Rational B–Splines (NURBS)–

based IGA instead of the conventional finite element method (FEM). The numerical 

examples illustrate the efficiency of the PCLS method with IGA in the efficiency, 

convergence and accuracy compared with the other level set methods (LSMs) in the 

framework of 2–D structural topology optimization. The results of the topology optimization 

reveal that the proposed method can obtain the same topology in lower number of 

convergence iteration. 
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1. INTRODUCTION 
 

Topology optimization has been proposed in order to determine an optimal layout of a 

structure or the best distribution of material in the conceptual design stage [1]. For the 

topology optimization, several methods have been developed in the past decades, such as 

Optimality Criteria (OC) methods [2, 3], the approximation methods [4–6], the Method of 
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Moving Asymptotes (MMA) [7–9], Evolutionary Structural Optimization (ESO) method 

[10] and even more heuristic methods such as genetic algorithm [11] and Ant colony [12]. In 

recent years, the level set method (LSM) has been proposed for the topology optimization of 

structures, which utilizes a flexible implicit description of the material domain [13]. The 

main idea of the LSM approach is to apply an implicit boundary describing model to 

parameterize the geometric model, and the boundary of a structure is embedded in a high–

dimensional level set function [14]. The LSM not only fundamentally avoid meshing 

dependence, but also maintain smooth boundaries and distinct material interfaces during the 

topological design process [15]. The capability of the standard LSM has been demonstrated 

in solving many different types of structural shape optimization problems with drastic 

topological changes [15]. However, the existence of some drawbacks has remained in the 

standard LSM such as: (1) The final optimal design highly depends on the initial guess of 

holes inside the design domain. (2) The time step must be considered to be a small enough 

value to satisfy the Courant–Friedrichs–Lewy (CFL) condition, and it leads to a time–

consuming optimization process with many iterations [16]. Therefore, several alternative 

LSMs have been proposed to eliminate the drawbacks of the standard LSM [16–20]. 

A piecewise constant level set (PCLS) approach as a variant of the standard LSM was 

proposed for the image segmentation, shape recovery or elliptic inverse problems [21]. In 

the PCLS approach, distinct constant values are selected for each sub–domain of the 

computational domain. In the PCLS method, an arbitrary number of sub–domains can be 

identified using only one discontinuous piecewise constant level set function. Furthermore, 

the interfaces between sub–domains are represented implicitly by the discontinuity of a set 

of characteristic functions of the sub–domains [21]. The PCLS method in comparison with 

the standard LSM does not required solving the Hamilton–Jacobi partial differential 

equation and the use of the signed distance function as the initial one. In recent years, the 

PCLS method has been utilized for the topology optimization [22, 23] and the shape and 

topology optimization and the Laplace equation in 2–D domain [19]. 

Most of topology optimization methods have utilized the conventional finite element 

method (FEM) for structural analysis and sensitivity calculation. In general, the method 

suffers two serious drawbacks due to a fixed FE grid used for material representation and 

numerical analysis. The first one is that design results are highly dependent on the initial 

fixed FE grid [24]. In the level set–based approaches, a fixed FE rid is applied to define 

level set values at nodes and to analyze design models. The second drawback is that the 

topology optimization based on FEM requires the high post–processing effort in converting 

the optimized result to the computer–aided design (CAD) model. Using an alternative 

analysis method without fixed grid can overcome the first drawback. Also, unifying analysis 

and design models defined with CAD data have been proposed to eliminate the second 

drawback. In these regards, the isogeometric analysis (IGA) approach has been developed as 

a promising alternative to FEM in topology optimization [25–27]. IGA based on Non–

Uniform Rational B–Splines (NURBS) basis function can be applied for both the solution 

field approximation and the geometry description. This leads to the ability of modeling 

complex geometries accurately.  

In this study, a hybrid of the PCLS method and IGA is proposed for the 2–D structural 

topology optimization. For defining the geometrical boundary of structure, the 

discontinuities of PCLS functions is used in the proposed hybrid method. The Lagrange 
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equations in the PCLS method is also solved by Additive Operator Splitting (AOS) scheme. 

In order to reduce the computational cost of the PCLS method, the Merriman–Bence–Osher 

(MBO) type of projection scheme is applied in the PCLS method. Furthermore, in the 

topology optimization procedure the NURBS based–IGA approach is considered instead of 

the conventional FEM. In fact, in the IGA approach control points play the same role with 

nodes in FEM and B–Spline basis functions are adopted as shape functions of FEM for the 

analysis of structure. Boundary conditions are directly imposed on control points. Numerical 

integration is implemented almost same with FEM in order to transform the parametric 

domain to master element for Gauss quadrature. In the topology optimization procedure, the 

design model is computed using a fixed isogeometric mesh which is unchanged during the 

topology optimization procedure. Hence, in this study the popular “Ersatz material” 

approach [15] is adopted in order to avoid the time–consuming re–meshing process of 

design model topology optimization procedure. In this study, three numerical examples are 

represented to demonstrate the capability and performance of the proposed method. The 

optimal results of the proposed method are also compared with the other LSMs to indicate 

the efficiency and accuracy of the proposed method. Finally, the results of the structural 

topology optimization demonstrate that the same optimum topology can be obtained by the 

proposed method in less iterations. Therefore, the proposed method can be considered as the 

efficient method in the 2–D structural topology optimization. 

 

 

2. TOPOLOGY OPTIMIZATION WITH THE PCLS METHOD 
 

2.1 Piecewise constant level set method 

The piecewise constant level set (PCLS) method was developed by Lie et al. [28]. Based on 

the PCLS method, the domain is partitioned into n sub–domains 
1

n

i
 such as [28]: 

 

1

n

i

i

     (1) 

 

where is the union of the boundaries of the sub–domains.  

In order to identify each of the sub–domains, a piece–wise constant function : R  is 

defined on the open and bounded domain. A distinct constant value within each sub–domain 

is selected as [28]: 
 

  ; ( 1,2,..., )ix i x i n     (2) 

 

In this method, just one function is required for identifying all the sub–domains in .  

Each sub–domain 
i can be associated with a characteristic function ( ),ix  such that 1i 

in 
i  and 0i   elsewhere as long as Eq. (2) holds. The characteristic functions can be 

constructed in the following form [28]: 
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   
1, 1,

1
and

n n

i i

j j i k k ii

j i k  
    

      (3) 

 

For representing the different properties in each sub–domain
ic  in i , a piecewise 

density function is defined as follow [28]: 
 

   
1

n

i i

i

c   


  (4) 

 

and 
 

        
1

1 2 ...
n

i

K n i    


       (5) 

 

In order to guarantee that there is no vacuum and overlap between the different phases, It 

is necessary to consider a piecewise constant constraint i.e.   0.K   With the simple 

structure of the characteristic functions, the volume and the perimeter of each subdomain i

are also measured by [28]: 
 

andi i i idx dx 
 

       (6) 

 

One of the main advantages of the PCLS method is to only use one level set function for 

representing multi–phases. In this study, the PCLS method is implemented in two phases for 

the topology optimization problems. Hence, the piecewise constant density function is 

defined in two phases as: 
 

     1 22 1c c         (7) 

 

where 1c and 2c are the specified characteristic values of the void material, with
1 0,c   and the 

solid material with
2 1.c   In order to ensure the convergence of the level set function   to a 

unique value in each sub–domain, the piecewise constant constraint is defined as: 
 

      0 and 1 2K K        (8) 

 

This indicates that every point in the design domain must belong to one phase, and there 

is no vacuum and overlap between different phases. 

 

2.2 Topology optimization based on the PCLS model 

The topology optimization process can operate on the PCLS model  presented in the 

previous section. In this study, the topology optimization problem is presented by 



STRUCTURAL TOPOLOGY OPTIMIZATION BASED ON HYBRID OF … 

 

497 

minimizing the mean compliance of a structure of two–phase material (i.e. solid and void). 

Hence, the topology optimization problem of a structure can be defined as follows [16]: 
 

     

 

 

   

       

 

1 0

2

0

Minimize: ,

subjected to: 0

0

, , ,

, ,

, . .

for all , |

N

D

ijkl ij kl

J u F u d d

H dx V

H K

a u v l v

a u v E u v d

l v f vd g vd

v U u u

    

 



 

    



 





 



    

  

 



 

   

 

 





 

  (9) 

 

where   is the structural domain and its boundary is represented by .   Also, the 

displacement field 0u is the prescribed displacement on ;D ijklE  is the elasticity tensor;
ij  

the strain tensor; and f  and g  are body the force and surface load, respectively.  

In the objective function ( ),J u the first term is the mean compliance where the function

( ) 1/ 2 ( ) ( )ijkl ij klF u E u u   is the strain energy density, and  is the material density ratio. The 

second term of the objective function is the regularization  term and is a nonnegative value 

to control the effect of this term [16]. Furthermore, this term controls both the length of 

interfaces and the jump of  may not be continuous in the piecewise constant level set 

method.
1H defines the material fraction for different phases, and 0V  is the maximum 

admissible volume of the design domain.
2H is the piecewise constant constraint to guarantee 

the level set function belong to only one phase [16].  

Using the augmented Lagrangian method, the problem (9) can be converted into an 

unconstraint one as [16]: 

 

        2 2

1 1 1 2 2 2

1 2

1 1
, , , ,

2 2
L J a u v l H H H d H d       

  
        

 
(10) 

 

where
1 R   and

2

2 ( )L   are the Lagrange multiplier, and
1 2, 0   are penalty parameters. 

For finding the saddle point of this function when there is no body force, f and the 

boundary traction, ,g the following equation was proposed by Wei and Wang [16] as: 

 

 1 2, , , 0u d   

   (11) 

 

           1 2 , , , , , 1 2

1
, , , .

2
i j k l i j k lu E u u K


            



 
          

 (12) 
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where 

 
 

2 1c c
 

 



   


 (13) 

 
 

2 3
K

K


 



   


 (14) 

 

and 
 

  1 1 0

1

1
d V   

 
    (15) 

 2 2

2

1
K  


   (16) 

 

In order to satisfy Eq. (11), the steepest descent method is used by selecting   as the 

following form [16]:  
 

 1 2, , ,
d

u
dt


       (17) 

 

Now, the optimization problem can be transformed into an ordinary differential equation 

problem with initial value
0 .  The simplest manner for updating the level set function is to 

use the explicit update scheme [16]: 
 

1n n d
t

dt


      (18) 

 

In this study, a semi–implicit method with the additive operator splitting (AOS) scheme 

is used. Therefore, 
2H can be eliminated in Eq. (10) and is not required for update

2  and 
2  

associated with this constraint.  

The Lagrange multiplier
1  and the penalty parameter

1  related to volume constraint with 

are also updated as [16]: 
 

  1

1 1 0

1

1

1 1

1k k

k

k k

dx V   


  







  




 (19) 

 

where (0,1) is a constant parameter. 
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3. AOS AND MBO SCHEMES IN TOPOLOGY OPTIMIZATION 
 

3.1 The AOS scheme 

For a given function space V and an operator (linear or nonlinear) defined in V, solving the 

following time dependent equation is required [16]: 
 

        ˆ, 0, ; 0A f t t T V
t


  


    


 (20) 

 

where V is a function space. By assuming the operator A as the time dependent, A and the 

function f can be splitted in the following form [16]: 

 

1 2 1 2... ; ...m mA A A A f f f f         (21) 
 

The computations of the fractional steps are independent of each other and some splitting 

schemes can be used to approximate the solution of Eq. (20). In this study, additive splitting 

scheme (AOS) proposed by Lu et al. [29] and Weickert et al. [30] is used. Assume,   is 

time step and 0 .̂   Thus, at each time level ,jt j 2

i
j

m


can be calculated in parallel for 

1,2,..., :i m   

 

2
2

1 2

1

( )

1

i
j

ijm j
m

i i j

im j
j m

i

A f t
m

m

 




 










 

 

 (22) 

 

3.2 The MBO scheme 

The MBO scheme was first proposed for approximating the motion of an interface by its 

mean curvature [31]. Furthermore, the MBO scheme was used as a splitting scheme for the 

phase field model and extended to image segmentation problems. The MBO scheme for the 

case of two regions can be considered as an algorithm expressed in the framework [31]: 

1. Choose initial value (0) 1  or 2 and the time step .  

2. Solve ( )t from 

 

( ) ( ) in

0 on

t

n nt t

n

 

 



 

 


 



 
(23) 

 

where ( 0,1,2,...)nt n n  and  1, .n nt t t   
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3. Set 
 

 
 

 

1

1

1

1 if 1.5

2 if 1.5

n

n

n

t
t

t












 
 



  (24) 

 

For connecting between the MBO scheme and the splitting algorithm, it is required to 

clarify it as a phase field method [21]. Let u  be the solution of 

 

 
1

tu u W u


     (25) 

 

In this study, it is assumed as ( ) ( 1)( 2).W       If the time splitting scheme is used for 

solving Eq. (25), solving the following two equations is required: 
 

 

( )

1
( )

t

t

a

b W

  

 


 

 
  (26) 

 

The rescaled solution ( , / )nx t  of Eq. (26.a) is the solution of (23). When 0 ,  the 

rescaled solution ( , / )nx t  of (24.b) has two stable and stationary solutions (i.e. 1  , 2) 

and unstable one ( 1.5).   If the unstable solution is eliminated, Eq. (24) gets. 

 

3.3 Hybrid of the PCLS method and the MBO and AOS schemes 

In this section, the solution of Eq. (20) is expressed by the AOS scheme. In order to increase 

the convergence speed and the efficiency of PCLS method, this method is combined with 

MBO scheme. ( )A     can be splitted into a sum of two following equations [22]: 

 

      1

1
( )

2
ijkl ij klB E u u


      




     


      (27) 

   2C K             (28) 

 

For the PCLS method in two phase fields, the function for the MBO projection is defined 

by [22]: 
 

 
1 if 1.5

2 if 1.5
P







 


           (29) 

 

Also, B is splitted into the following form: 
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      1

1
( ) ; 1,2

2

i
i i ijkl ij kl

D
B D E u u i


      


     


           (30) 

 

where 
iD  denotes the partial derivative with respect to .ix  Also, the following equation is 

considered as: 
 

1 2A B B C     (31) 

 

For using the AOS scheme (Eq. (20)) for splitting when the piecewise constant constraint

2H  is replaced by the MBO projection in two dimensional problems, it is required to use the 

following algorithm [22]: 

1. Obtain 4

i
n




in parallel for 1,2i   from. 

 

   
44

1

4

1
( ) ; 1,2

2 2

ii
nn

n

i
i ijkl ij kli

n

D
D E u u i

 
     









     



           
(32) 

 

2. Compute 1n   by: 

 

 
2

1 4

1

1

3

i
n

n n

i

p  






 
  

 
            (33) 

 

 

4. ISOGEOMETRIC ANALYSIS APPROACH 
 

Isogeometric analysis (IGA) approach has been developed as a powerful computational 

approach that offers the possibility of integrating FE analysis into conventional NURBS–

based CAD tools [24]. The IGA approach has attracted many attentions in various 

engineering problems, which has been applied for the discretization of partial differential 

equations. The main advantage of IGA is to use the NURBS basis functions which 

accurately model the exact geometries of solution space for numerical simulations of 

physical phenomena.  

 

4.1 B–Spline and NURBS basis function 

In this section, the B–Spline and NURBS basis function is expressed. A NURBS surface is 

parametrically defined as [32]: 

 

, , , ,
1 1

, , ,
1 1

( ) ( )
( , )

( ) ( )

n m
i p j q i j i j

i j

n m
i p j q i j

i j

N N P
S

N N

 
 

 





 

 


 

 
 (34) 
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where ,i jP
 
are ( , )n m control points, ,i j are the associated weights and , ( )i pN   and , ( )j qN   

are the normalized B–splines basis functions of degree p  and q  respectively. The i th B–

splinebasis function of degree ,p shown by , ( )i pN  , is expressed as [32]:  

 

1

,0

1    if 
( )

0   otherwise

i i

i
N

  



 

 


 (35) 

 

and 
 

1

, , 1 1, 1

1 1

( ) ( ) ( )i p

i p i p i p

i p i

i

i p i

N N N
  

  
   

 

  

  


 

 
 (36) 

 

where  0 1, ,..... r    is the knot vector and, i  are a non–decreasing sequence of real 

numbers, which are called knots.  

The knot vector  0 1, ,..., s    is employed to define the , ( )j qN  basic functions for 

other direction. The interval    0 0, ,r s    forms a patch [24].  A knot vector, for instance 

in   direction, is called open if the first and last knots have a multiplicity of 1.p   In this 

case, the number of knots is equal to .r n p   Also, the interval  1,i i   is called a knot 

span where at most 1p  of the basic functions , ( )i pN  are non–zero which are 

, ,( ),...., ( )i p p i pN N  . 

 

4.2 formulation of isogeometric analysis based on NURBS  

By using the NURBS basis functions for a patch ,p the approximated displacement functions 

 ,pu u v  can be defined as [24]: 

 

, ,1 1
( , ) ( , )

n mp p

i j i ji j
u R u   

 
   (37) 

 

where , ( , )i jR   is the rational term. Furthermore, the geometry is approximated by B–spline 

basis functions as [24]: 
 

, ,1 1
( , ) ( , )

n mp p

i j i ji j
S R S   

 
   (38) 

 

By using the local support property of NURBS basis functions, Equations (37) and (38) 

can be summarized as it follows in any given 1 1( , ) [ , ) [ , ).i i j j         

 

  , ,( , ) ( , ), ( , ) ( , ) RU
i jp p p p

k l k lk i p l j q
u u v R U       

   
     (39) 
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  , ,( , ) ( , ), ( , ) ( , ) RP
i jp p p p

k l k lk i p l j q
S x y R P       

   
     (40) 

 

Final, the stiffness matrix for a single patch is also computed as, 

 
( , ) ( , )

T
d dt    



 K B DB J  (41) 

 

where t is the thickness, B ( , )  is the strain–displacement matrix, and J is the Jacobian 

matrix which maps the parametric space to the physical space. D is the elastic material 

property matrix for plane stress. It is noted that in this study the standard Gauss–quadrature 

over each knot space is utilized for numerical integration.  

 

 

5. NUMERICAL EXAMPLES 
 

To demonstrate the hybrid of the PCLS method and IGA approach for the 2–D topology 

optimization of structures, three examples of isotropic plane elasticity problem which have 

been widely studied in the relevant literature [22, 23, 25–27] are presented in this section. In 

all examples, the modulus of elasticity, the Poisson’s ratio and thickness are considered as 1 

Pa, 0.3 and1 m, respectively. In “Ersatz material” approach [15], Young’s modulus of Ersatz 

material is assumed as 10–3Pa. Also, 
1c  and 

2c  are considered to be 0.001 and 1, 

respectively. In the optimization procedure, the size of time step was equal to be 9,  and 

the other parameters were considered as
6

110 , 0.01,    
1 500   and 0.9.   The initial 

level set function was considered to be constant with 2.   

 

5.1 Cantilever beam 

The cantilever beam shown in Fig. 1 is selected as the first example. As shown in Fig. 1, the 

length of the domain is L 80mm and the height is H 40 .mm  The cantilever is subjected 

to a concentrated load P=1N at the middle point of the free end.  
 

 
Figure 1. Fixed design domain and boundary condition of a cantilever example 

 

In the optimization procedure, the volume constraint was assumed to be 40% of the total 

domain volume. Furthermore, the initial geometry was modeled based on a bi–quadratic 

NURBS geometry with 10×6 control points. The open knot vectors were respectively {0, 0, 0, 

0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1, 1, 1} and {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1} in   and 
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  direction, thus leading to 8 4 knot spans. By subdividing each knot span into 10 equal parts 

in   and   direction, the physical mesh with 80×40 knot spans and the control mesh with 

82×42 control points were obtained. The evolution procedure of the structural topology based on 

the proposed method is shown from Figs. 2(a) to 2(f). The final topology of the cantilever is also 

depicted in Fig. 2(f). 
 

 
Figure 2. The evolution of optimal topology of the cantilever beam 

 

In recent years, this example has been investigated by the other researchers [33–35]. The 

final optimal topology obtained the proposed method of this study was compared with those 

obtained in other studies [33–35] and shown in Fig. 3.  
 

 
(a) The conventional LSM with FEM [33] 

 
(b) The binary LSM and holes with FEM [33] 

 
(c) The binary LSM and non–holes with FEM [33] 

 
(d) The radial basis function LSM with IGA [34] 

 
(e) The enhanced LSM with FEM [35] 

 
(f) This study 

Figure 3. The comparison of the final optimal topology in this study with the other studies 
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As can been seen from Fig. 3, the final design obtained in this study is similar to those 

reported in the literature. Furthermore, the optimal results of this study and other studies are 

compared and presented in Table 1. 

 
Table 1: Comparison of the proposed method and other studies 

Schemes 
Objective 

function 

Number of convergence 

iterations 

The conventional LSM with FEM [33] 63.88 200 

The binary LSM and holes with FEM [33] 62.73 115 

The binary LSM and non–holes with FEM [33] 64.18 100 

The radial basis function LSM with IGA [34] 62.66 60 

The enhanced LSM with FEM [35] 80.22 81 

The proposed method 74.70 65 

 

It is obvious from Table 1 that the performance of the proposed method in the term of the 

number of convergence iterations is better than the other LSMs with FEM and IGA. 

Although, the radial basis function LSM with IGA [34] outperforms the proposed method. 

Hence, the proposed method can be considered as an efficient method in the structural 

topology optimization. The evolution of the compliance and the volume fraction are also 

shown in Fig. 4. The value of the compliance at the optimal design is equal to 74.70. 
 

 
Figure 4. The convergence histories of the compliance and volume ratio 

 

5.2 Messerschmitt–Bölkow–Blom beam 

Messerschmitt–Bölkow–Blom (MBB) beam considered as the second example is the 

benchmark problem in the topology optimization of structures. The geometry model and 

loading conditions of the MBB beam is shown in Fig. 5. The length of the domain is 

L 120mm and the height is H 30 .mm  The problem is subjected to a concentrated load 
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P=1N at the upper half of the vane. In the optimization procedure, the specified material 

volume fraction is 40%. 

 

 
Figure 5. Fixed design domain and boundary condition of the MBB beam 

 

The topology optimization was implemented based on the proposed method with 12030 

mesh isogeometric and the topology evolving history was depicted in Fig. 6. The topology 

evolving history shown that the final topology was obtained in the 68 iterations. 

 

 
Figure 6. The evolution of optimal topology of the MBB beam 

 

In order to validate the performance of the proposed method, the optimal topology 

obtained using the proposed method was also compared with that reported in the other 

studies and shown in Fig. 7. The comparison of the optimal topology shown in Fig. 7 reveals 

that the final topology obtained in this study is similar to those reported in the literature. 

Although, the trivial difference can be observed between the optimal topology obtained in 

this study and that reported in Ref. [35]. 

 The optimal results of this study and the study implemented by Roodsarabi et al. [26] are 

compared in terms of the objective function and number of convergence iterations and 

reported in Table 2. As can be seen from Table 2, the performance of the proposed method 

in the term of the number of convergence iterations is better than the topological derivative–

based LSM with FEM [26]. Although, the topological derivative–based LSM with IGA [26] 
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in comparison with the proposed method achieves a less compliance at a fewer number of 

convergence iterations. Hence, the proposed method can be considered as an efficient 

method in the topology optimization of the structure. 

 

 
(b) The enhanced LSM with FEM [35] 

 
(c) Topological derivative–based LSM with 

IGA [26] 

 
(d) Topological derivative–based LSM with FEM 

[26] 

 
(e) This study 

Figure 7. The comparison of the final optimal topology in this study with the other studies 

 
Table 2: Comparison of the proposed method and other LSMs 

Schemes 
Objective 

function 

Number of 

convergence iterations 

The topological derivative–based LSM with FEM [26] 46.94 70 

The topological derivative–based LSM with IGA [26] 46.36 50 

The proposed method 46.91 68 

 

The history of the structural strain energy variation and material usage within the design 

domain during optimization is also depicted in Fig. 8. 

 

 
Figure 8. The convergence histories of the compliance and volume ratio 
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5.3 Michell structure with multiple loads 

The Michell type structure with multiple loads was considered as the final example. Fig. 9 

shows the boundary condition of this kind of structure. The left corner of the bottom of the 

design domain was fixed and its right corner was simply supported. Three forces were 

applied at the equal spaced point at the bottom boundary with 
1 30P N  and 

2 15 .P N The 

design domain was80 40  which is discretized with 3200, 1 1  squared elements. The 

volume fraction was assumed to be 40% .  

 

 
Figure 9. Fixed design domain and boundary condition of the Michell structure 

 

The evolution process of the optimal topology of this Michell type structure is displayed 

in Fig. 10. 

 

 
Figure 10. The evolution of the optimal topology for the Michell beam 
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The final topology was obtained in 70 iterations. For the assessment of the proposed 

method, the final optimal topology obtained in this study was compared with that obtained 

in the work of Shojaee and Moahmmadian [33] and was shown in Fig. 11. In the work of 

Shojaee and Moahmmadian [33], this example was investigated using the BLSM with FEM. 

 

 
(a) The BLSM with FEM [33] 

 
(b) This study 

Figure 11. The comparison of the optimal topology in this study with that of Ref. [33] 

 

As obvious from Fig. 11, the final design obtained in this study is approximately similar 

to that reported in the literature [33]. Furthermore, the comparison of the convergence 

history of the volume ratio and compliance between this study and the work of Shojaee and 

Moahmmadian [33] is shown in Figs. 12 and 13, respectively. 

 

  

(a) This study (b) Shojaee and Moahmmadian [33] 

Figure 12. The comparison of the convergence history of the volume ratio between this study 

and Ref. [33] 

 

The results depicted in Figs. 12 and 13 demonstrated that the capability of the proposed 

method in the term of the number of convergence iterations is better than the BLSM with 

FEM. 
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(a) This study (b) Shojaee and Moahmmadian [33] 

Figure 13. The comparison of the convergence history of the compliance between this study and 

Ref. [33] 

 

 

6. CONCLUSIONS 
 

The main aim of this study is to propose the hybrid of the PCLS method and the IGA 

approach for the topology optimization of structures. The PCLS method was related to both 

the classical LSMs and the phase–field methods. The piecewise constant constraint was used 

in the PCLS method for no overlap and vacuum between the sub–domains of different 

phases. In the conventional LSM, the augmented Lagrangian method as the penalization 

method has been considered, and it has required a tiny value for the penalty parameter. This 

causes that the convergence speed and numerical performance of the iterative procedure 

would become more challenging. In order to overcome these drawbacks, in this study the 

AOS scheme and the MBO projection were adopted in the PCLS method. In the topology 

optimization procedure, the NURBS based–IGA approach was also used instead of the 

conventional FEM.  

The capability and efficiency of the proposed method was validated through the 2–D 

benchmark examples widely used in the structural topology optimization. For achieving this 

purpose, the number of convergence iterations and the final topology obtained by the 

proposed method was compared with the outcome of the other LSMs with FEM and IGA. 

The comparison of the proposed method and the other LSMs indicated that the PCLS 

method with IGA offered the similar optimal topology while requiring fewer convergence 

iterations. Although, the topological derivative–based LSM and the radial basis function 

LSM with IGA in comparison with the proposed method achieved a lighter volume ratio (or 

compliance) at a fewer number of iterations. 

Further research is required to validate the robustness and efficacy of the proposed 

method in the 3–D structural topology optimization such as shell structures. Additional 

researches are also required to accurately determine its time complexity (or number of 

convergence iterations) in the 3–D structural topology optimization. 
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