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ABSTRACT 
 

Despite the advantages of the plastic limit analysis of structures, this robust method suffers 

from some drawbacks such as intense computational cost. Through two recent decades, 

metaheuristic algorithms have improved the performance of plastic limit analysis, especially 

in structural problems. Additionally, graph theoretical algorithms have decreased the 

computational time of the process impressively. However, the iterative procedure and its 

relative computational memory and time have remained a challenge, up to now. In this 

paper, a metaheuristic-based artificial neural network (ANN), which is categorized as a 

supervised machine learning technique, has been employed to determine the collapse load 

factors of two-dimensional frames in an absolutely fast manner. The numerical examples 

indicate that the proposed method's performance and accuracy are satisfactory. 
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1. INTRODUCTION 
 

One of the powerful structural analysis methods, especially for ductile materials, is Plastic 

Analysis (PA). The basis of almost all the analytical methods employed for PA is the 

maximum and minimum principles [1]. Among minimum principal methods, the most 

frequent one is the combination of elementary mechanisms. This method has developed by 

Neal and Symonds, first [2]–[4].  

In 1951, due to Charnes and Greenberg’s effort [5], the PA problem of frames with rigid 
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joints started to solve. Linear Programming (LP) was the main tool employed by them. 

Heyman [6] utilized simple plastic theory to investigate the minimum weight of rectangular 

two-dimensional frames under different loading conditions. The principal theory in his study 

was the Foulkes Theory. Further progress in this field is attributed to Watwood [7], Baker 

and Heyman [8], Jennings [9], Thierauf [10], Horne [11], and Gorman [12]. 

Despite the advantages of the combination of elementary mechanisms, this method 

suffers from some drawbacks. These drawbacks prevent it to be considered a frequent 

analysis tool. Among these drawbacks, the extensive number of mechanisms that have to be 

combined for evaluating the collapse load factor, impose an intense computational cost, 

either in time or memory, to the problem solver. Therefore, some novel approaches, such as 

graph theory, and modern algorithms, such as metaheuristics, have been used in this manner. 

For the first time, Kaveh [13] has employed graph theoretical concepts for flexibility 

analysis of structures. In this manner, he has improved cycle bases in flexibility analysis for 

an efficient and accurate analysis of structures. Using this novel methodology, 

Mokhtarzadeh and Kaveh [14] presented an efficient graph theoretical method for optimal 

plastic analysis and design of frames. Kaveh and Khanlari [15] employed the genetic 

algorithm to estimate the collapse load factor of planar frames. Kaveh and Rahami [16] have 

utilized Genetic Algorithm for the structural analysis using force method. Palizi and Saedi 

Daryan [17], presented a comparative study between different metaheuristic algorithms for 

plastic analysis of braced frames. an Automatic method for evaluation of plastic collapse 

conditions of planar frames has been presented by Greco et al. [18]. Smail and Laid [19], 

proposed a second-order analysis of plane steel structures using the Rankine-Merchant-

Wood approach. Kaveh et al. [20] utilized the ant colony system and Charge System Search 

(CSS) algorithms for optimal PA. Colliding Bodies Optimization (CBO) and its enhanced 

version (ECBO) have been employed by Kaveh and Ghafari [21] for these structures. The 

rectangular grid’s collapse load factor has been studied by Kaveh et al. [22]. Also, Kaveh 

and Jahanshahi [23], developed a metaheuristic-based framework for Plastic Limit Analysis 

(PLA) of frames. 

Although all the above-mentioned efforts have been considered crucial studies in this 

field and they improved some computational drawbacks of PA, the intense computational 

cost of the plastic analysis, due to their iterative approaches has remained up to now. 

Therefore, it seems that a new computational method is required to be added to this field. In 

this paper, a metaheuristic-based artificial neural network (ANN), which is categorized as a 

supervised machine learning technique, has been employed to determine the collapse load 

factors of two-dimensional frames in an absolutely fast manner. The numerical examples 

indicate that the proposed method's performance and accuracy are satisfactory. 

The paper is organized as follows. Section 2 introduces the formulation of the PA, 

including the generation of elementary mechanisms, determination of the collapse load 

factor, and combination of elementary mechanisms. An introduction to the metaheuristic 

algorithms and artificial neural networks is presented in Section 3. Section 4 is dedicated to 

the proposed new algorithm and its numerical validations. Finally, Section 5 concludes the 

study. 

 

2. PLASTIC ANALYSIS 
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One of the computational methods to find a set of independent mechanisms has been 

developed by Watwood [7]. However, this method also calculates joint mechanisms which 

causes some extra computational overhead. Also, the axial deformation can be neglected due 

to the effects of rotational degrees of freedom on the creation of the plastic hinges. Hence, 

the modified method proposed by Pellegrino and Calladine [24] and Deeks [25], may be 

employed. 

By indicating the elongation of each member in terms of its displacements in global 

coordinates, i.e., two displacement components for each joint or node, Eq. 1 can be obtained. 

 

(1) ( )cos ( )sin
i j i jx x y ye d d d d    

 

 
Using matrix notation, Eq. 1 leads to Eq. 2. 

 

(2) e = Cd  

 
where d is the nodal displacement vector, C is the compatibility matrix, and e is the 

elongation vector. 

In an acceptable mechanism, elements do not elongate. Therefore, Eq. 3, should be 

solved as the principal problem system of equations. 

 

(3) e = Cd  

 
In Eq. 3, the number of columns of matrix C exceeds the number of rows. The difference 

indicates the number of independent mechanisms. Therefore, Eq. 3 can be decomposed into 

Eq. 4. 

 

(4) 
   
   

  

i

d d

0d
[I,C ] =

0d
 

 
Rearrangement of the Eq. 4, leads to Eq. 5. 

 

(5) i d dd = -C d  

 
The selection of the dependent vectors for dd is the selection of the independent 

mechanisms. Therefore, the calculation of the di in Eq. 5, leads to a solution to Eq. 3. 

The virtual work theorem should be employed to calculate the collapse load factor. The 

obtained rotations and displacements can be used for the calculation of the internal and 

external works. Therefore, the collapse load factor can be obtained using Eq. 6. 

 

 [
 D

O
I:

 1
0.

22
06

8/
ijo

ce
.2

02
3.

13
.2

.5
46

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 c

ef
ss

e.
iu

st
.a

c.
ir

 o
n 

20
26

-0
2-

20
 ]

 

                             3 / 13

http://dx.doi.org/10.22068/ijoce.2023.13.2.546
https://cefsse.iust.ac.ir/ijoce/article-1-546-en.html


A. Kaveh, M.R. Seddighian, and N. Farsi 

 

146 

(6) 
int enral

c

external

W

W
 

 
 

Finally, for obtaining a logical collapse mechanism, the elementary mechanisms should 

be combined. This procedure can be considered an optimization problem. The objective is to 

combine elementary mechanisms in a manner that the collapse load factor will be 

minimized. For this aim, the elementary mechanisms and their corresponding coefficient are 

considered the decision variables. At least, the problem can be solved using optimization 

methods, such as meta-heuristic algorithms. 

 

 

3. SOFT COMPUTING METHODS 

 
This section is dedicated to soft computing method details. Firstly, metaheuristic algorithms 

have been introduced. Due to the application of the Enriched Firefly Algorithm (EFA) in 

this paper, the details of this method are presented in the following. Finally, the artificial 

neural networks (ANNs) formulation follows them. 

 

3.1. Metaheuristic Algorithms 

In these times, those types of computational algorithms, which are called meta-heuristics 

have gained wide usage in engineering, applied mathematics, economics, medicine, and 

other fields. The first category of meta-heuristic algorithms is the nature-inspired one. Some 

behavior of Animals such as migrating, hunting, flocking, and foraging procedures are very 

suitable for computational simulation. Therefore, these behaviors can be studied and 

implemented as swarm intelligent rules to develop an appropriate meta-heuristic algorithm. 

For instance, one of the most powerful meta-heuristic algorithms that are known as Particle 

Swarm Optimization or PSO is inspired by the social behavior of birds flocking or fish 

schooling [26]. As another example, Water Strider Algorithm (WSA) mimics the life cycle 

of water strider bugs and their intelligent ripple communication [27]. other types of meta-

heuristic algorithms are developed according to the physical laws such as Black Holes 

Mechanics Optimization (BHMO) algorithm [28] and Charged System Search (CSS) 

algorithm [29]. Also, there are some meta-heuristics based on mathematical models. The 

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm is one of them [30]. 

Finally, some meta-heuristic algorithms such as Teaching-Learning Based Optimization 

(TLBO) algorithm [31] and Tug of War (TOW) algorithm [32] are developed based on 

human behaviors. 

In this paper, one of the recently developed meta-heuristic algorithms, known as the 

Enriched Firefly Algorithm (EFA), is utilized to improve the performance of artificial neural 

networks (ANNs). Therefore, FA and its enriched version are explained in the following. 

 

3.2. Firefly Algorithm and its Enriched Version 

The basic version of the Firefly algorithm (FA) was presented by Yang [33] and has been 

applied successfully in either continuous or discrete optimization problems. Although it is 

proven that FA is a better algorithm than many other optimization meta-heuristic algorithms, 
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there are some drawbacks to its computational processes. For instance, Khadwilard et al. 

[34] indicated that the FA could not find the optimum solution to some problems and was 

trapped in the local optima. Therefore, many adaptive, hybrid, chaotic, improved, and 

enhanced versions of basic FA have been developed so far. 

For the implementation of the FA, there are two critical considerations. First, the 

variation of light intensity, and second, the formulation of attractiveness. The appropriate 

assumption, for simplicity, is that the attractiveness of a firefly is indicated by its brightness 

which is, in turn, mapped to the encoded cost function. in minimization cases, the brightness 

of a firefly at location x can be selected approximately as Eq. 7. 

 

(7) 𝐼(𝒙) ≅
1

𝑓(𝒙)
 

 
where I(x) is the brightness, f(x) is the objective function, and x is the position vector of the 

firefly. Therefore, if the cost function has a higher value in this type of problem, the 

corresponding firefly will have less brightness. 

The variations of light intensity and attractiveness are monotonically reducing functions 

being as the light intensity and the attractiveness reduces, the distance from the source 

increases, and vice-versa. This procedure is formulated as Eq. 8. 

 

(8) 𝐼(𝑟) =
𝐼0

1 + 𝛾𝑟2
 

 
where I(r) is the light intensity, r is the firefly distance, and I0 is the light intensity at the 

source. Since the air absorbs part of the light and makes it weaker, the air absorption is 

modeled mathematically by the light absorption coefficient γ. 

In many problems and applications, the combined effect of both can be approximated 

using the Gaussian form as formulated in Eq. 9. 

 

(9) 𝐼(𝑟) = 𝐼0𝑒−𝛾𝑟2
 

 
The attractiveness of a firefly (β) is proportional to its brightness (or light intensity). β 

can be defined as Eq. 10. 

 

(10) 𝛽(𝑟) = 𝛽0𝑒−𝛾𝑟2
 

 
where β0 is the attractiveness at r = 0. 

Finally, the ith firefly movement (exploration and exploitation) towards the brighter and 

more attractive one j is modeled using Eq. 11. 

 

(11) 𝑥𝑖(𝑡) = 𝑥𝑖(𝑡) + 𝛽0𝑟−𝛾𝑟𝑖,𝑗
2

(𝑥𝑗 − 𝑥𝑖) + 𝛼(𝑟𝑎𝑛𝑑 − 0.5) 
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where α is the randomization parameter, rand is a random number uniformly distributed 

between 0 and 1, and ri,j is the Euclidean distance between fireflies i and j. 

The Enriched version of the basic Firefly Algorithm or EFA is proposed by Kaveh and 

Seddighian [35]. As they mentioned in their paper, some computational steps in the firefly 

algorithm increase its computational complexity. The first is to calculate the Euclidean 

distance between each pair of fireflies. The corresponding computational complexity to this 

process is equal to O(N2), where N is the number of fireflies. Therefore, the first enrichment 

is devoted to linearizing this step. There are many programming tricks to handle this 

drawback. The authors of the EFA paper [35] propose to define a radius ξ as Eq. 12. 

 

(12) 𝜉 = 𝜆𝑟𝑚,𝑛 

 
where λ is the region coefficient corresponding to the problem type, m and n are the best and 

worst fireflies in each iteration, respectively. Also, λ can be decreased linearly in each 

iteration. 

Herein, it is possible to select those fireflies that are in a feasible circular region of radius 

ξ in which the best firefly in each iteration is in the center. Using this trick, the algorithm's 

computational complexity will be converted to T×O(N), where N is the total number of 

fireflies, and T is the number of fireflies within the feasible region. 

The second change in the firefly algorithm that seems to make it more effective is to 

modify the position vector dimension. Each firefly position vector contains N variables, 

where N is the number of decision variables utilized to obtain the Euclidean distance 

between two fireflies. It is proposed that the corresponding value of the objective function 

with each firefly be added to the vector position. Therefore, each position vector includes the 

N+1 variable. This minor enrichment on the vector position improves the convergence rate 

of the algorithm impressively. 

Finally, the last enrichment applied to the basic version of FA is to change from the 

Euclidean to the Mahalanobis distance. Since the deviation from the best cost is important, it 

is essential to consider how each variable indicates similar behavior to the best objective. 

This tendency can be formulated mathematically using the covariance matrix. 

In statistics and probability theory, covariance measures how much two random variables 

change together. A positive covariance means that the two variables tend to move along, 

while two variables move inversely if and only if their relative covariance is negative. In the 

case of two jointly distributed real-valued random variables, the covariance of X and Y are 

defined by Eq. 13. 

 

(13) 𝑐𝑜𝑣(𝑋, 𝑌) = 𝐸[(𝑋 − 𝐸(𝑋)), (𝑌 − 𝐸(𝑌))] 

 
where E(X), and E(Y) is the expected values of X and Y, respectively. 

The covariance matrix is a square and symmetric matrix given by Eq. 14. 
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(14) 𝐶𝑖𝑗 = 𝑐𝑜𝑣(𝑋𝑖, 𝑋𝑗), 𝐶 ∈  𝑅𝑑 

 
where d is the number of problem dimensions. 

For example, for two-dimensional problems, it can be written as Eq. 15. 

 

(15) 𝐶 = [
𝑐𝑜𝑣(𝑋, 𝑋) 𝑐𝑜𝑣(𝑋, 𝑌)

𝑐𝑜𝑣(𝑌, 𝑋) 𝑐𝑜𝑣(𝑌, 𝑌)
] 

 
where C is the covariance matrix. 

The Mahalanobis distance is a measure of the distance between points or vectors. It can 

be stated that the Mahalanobis distance indicates dissimilarity measured between two 

vectors. The Mahalanobis distance can be formulated as Eq. 16. 

 

(16) 𝑑(𝒙, 𝒚) = √(𝒙 − 𝒚)𝐶−1(𝒙 − 𝒚) 

 
where C is the covariance matrix between position vectors x and y. If the covariance matrix 

is identity, then the Mahalanobis distance will be equal to the Euclidean distance. 

The results obtained from the mathematical benchmark functions and other structural 

ones indicate that the last enrichment increases the convergence rate of the algorithm 

efficiently. 

 

3.3. Artificial Neural Networks 

Nowadays, Artificial Neural Networks (ANNs) are utilized widely to simulate complex 

systems such as mechanical, Medical, industrial, and many others. In this computational 

method, the considered variables, have been imported into the system as inputs. The labeled 

results corresponding to each input have been considered as the network targets. Therefore, 

this method is categorized as the supervised machine learning method. An activation 

function tries to simulate a network to convert inputs to targets. The results of the activation 

function and its weights initially are not compatible with the targets. Therefore, there is an 

error between outputs (results of the activation function and its weights) and targets should 

be neglected. Hence, an optimization problem is utilized to minimize this simulation error. 

Different activation functions, number of layers, optimization algorithms, and other features 

make different architectures of an ANN. 

 

4. PROPOSED METHOD AND NUMERICAL VALIDATIONS 
 

As introduced before, the computational cost, either in memory or in time, of the 

conventional methods for plastic analysis is absolutely considerable. Therefore, it is vital to 

propose a new efficient method for this type of problem. 

For this aim, it is proposed in this paper to employ an ANN to detect the collapse 

mechanism of frames and their corresponding load factor. The procedure is presented in the 

following. 
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Firstly, a dataset of the collapse mechanism and its corresponding load factors are 

generated. For this aim, an implemented python code, based on the Hinge-by-Hinge method 

[36], is used to create and analyze about 3000 portal frames including different support 

conditions, geometry properties, loading conditions, and element connectivity. These 

features are considered as the ANN inputs and the computed collapse mechanism and load 

factors are assumed as its targets. 

Due to the enormous dataset, the optimization procedure of the ANN remains a time-

consuming problem. For the treatment of this issue, the EFA method has been employed for 

optimization. Finally, the trained ANN can be used to detect the collapse mechanism of new 

frames, in less than 1 second. This efficiency is validated via the following numerical 

examples. There are no specific units for each example. Any consistent unit system can be 

employed for simulation. 

 

4.1. Example 1: Two-Bay, Three-Story Frame 

The first example, as shown in Fig. 1, is a two-bay, three-story frame that is considered a 

famous benchmark problem. The geometry and load conditions are passed into the trained 

ANN and the collapse mechanism and load factor are obtained. Fig. 2 comprises the real 

mechanism [23] and the obtained one together. 

 

 
Figure 1. The geometry and loading conditions of example 1. 
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(a) (b) 

Figure 2. The comparison of the real collapse mechanism and obtained one via ANN of Example 1. 

 

The real and computed collapse load factor is equal to 1.97. the most important 

difference is in the computational time. In a similar computer, the conventional methods 

require 1463.23 seconds and the proposed method needs 0.005 seconds, for analysis. 

Therefore, the efficiency of the proposed method as well as its accuracy can be deducted. 

 

4.2. Example 2: Three-Bay, Three-Story Frame 

The second example, as illustrated in Fig. 3, is more complicated than example 1. In this 

example, the collapse mechanism and load factor of a three-story, three-bay frame are 

investigated. 

Similar to example 1, the comparison of the real mechanism and the obtained one is 

presented (Fig. 4). The collapse load factors for both methods are equal to 1.6. however, the 

efficiency of the proposed method is about 0.007 seconds in comparison to 1501.44 seconds 

of the evolutionary methods. 

 

 
Figure 3. The geometry and loading conditions of example 2. 
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(a) (b) 

Figure 4. The comparison of the real collapse mechanism and obtained one via ANN of Example 2.  

 

Due to the similarity of the collapse mechanisms and load factors of the evolutionary and 

the proposed method and the obvious differences between their computational costs, it is 

possible to claim that the new proposed algorithm is considerable, either in accuracy or 

efficiency. 

 

4.3. Example 4: Two-Bay Gable Frame 

The last example is more complicated than the two previous problems. This complexity is 

due to the slope of the rafters of the gable frame that influences overall on the collapse 

mechanism. Fig. 5 and Fig. 6 illustrate the problem condition and its comparison with the 

evolutionary method result, respectively. 

 

 
Figure 5. The geometry and loading conditions of Example 3. 
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(b) 

Figure 6. The comparison of the real collapse mechanism and obtained one via ANN of Example 3.  

 

The actual collapse load factor of example 3 is equal to 1 and both evolutionary and 

proposed methods have been obtained from it. However, the computational time of the 

evolutionary methods is nearly 3600 seconds. This time for the newly proposed method is 

equal to 0.012 seconds. 

Similar to previous examples, this example also confirms the efficiency and accuracy of 

the new proposed algorithm. 

 

5. CONCLUSION 
 

In this paper, a new computational method according to a metaheuristic-based Artificial 

Neural Network (ANN) has been presented. In this new framework, firstly a computational 

dataset, including 3000 structures and their corresponding collapse mechanisms and load 

factors has been generated using the hinge-by-hinge method. After that, a hybrid 

metaheuristic-ANN framework has been employed to simulate the procedure of the 

calculation of the collapse mechanism and its corresponding load factor. The trained 

framework is now capable to obtain actual collapse mechanisms and load factors for new 

frames. This claim has been proved via three different, challenging, and benchmark 

problems. All numerical examples confirm the efficiency and accuracy of the new proposed 

algorithm for plastic limit analysis. 
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