Search published articles


Showing 9 results for Biabani

K. Biabani Hamedani , V. R. Kalatjari,
Volume 8, Issue 4 (10-2018)
Abstract

Structural reliability theory allows structural engineers to take the random nature of structural parameters into account in the analysis and design of structures. The aim of this research is to develop a logical framework for system reliability analysis of truss structures and simultaneous size and geometry optimization of truss structures subjected to structural system reliability constraint. The framework is in the form of a computer program called RBO-S>S. The objective of the optimization is to minimize the total weight of the truss structures against the aforementioned constraint. System reliability analysis of truss structures is performed through branch-and-bound method. Also, optimization is carried out by genetic algorithm. The research results show that system reliability analysis of truss structures can be performed with sufficient accurately using the RBO-S>S program. In addition, it can be used for optimal design of truss structures. Solutions are suggested to reduce the time required for reliability analysis of truss structures and to increase the precision of their reliability analysis.
A. Kaveh, K. Biabani Hamedani,
Volume 10, Issue 1 (1-2020)
Abstract

The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for embedding graphs in the plane. The algorithms consist of Artificial Bee Colony algorithm, Big Bang-Big Crunch algorithm, Teaching-Learning-Based Optimization algorithm, Cuckoo Search algorithm, Charged System Search algorithm, Tug of War Optimization algorithm, Water Evaporation Optimization algorithm, and Vibrating Particles System algorithm. The performance of the utilized algorithms is investigated through various examples including six complete graphs and eight complete bipartite graphs. Convergence histories of the algorithms are provided to better understanding of their performance. In addition, optimum results at different stages of the optimization process are extracted to enable to compare the meta-heuristics algorithms.
A. Kaveh, K. Biabani Hamedani, F. Barzinpour,
Volume 10, Issue 2 (4-2020)
Abstract

Meta-heuristic algorithms are applied in optimization problems in a variety of fields, including engineering, economics, and computer science. In this paper, seven population-based meta-heuristic algorithms are employed for size and geometry optimization of truss structures. These algorithms consist of the Artificial Bee Colony algorithm, Cyclical Parthenogenesis Algorithm, Cuckoo Search algorithm, Teaching-Learning-Based Optimization algorithm, Vibrating Particles System algorithm, Water Evaporation Optimization, and a hybridized ABC-TLBO algorithm. The Taguchi method is employed to tune the parameters of the meta-heuristics. Optimization aims to minimize the weight of truss structures while satisfying some constraints on their natural frequencies. The capability and robustness of the algorithms is investigated through four well-known benchmark truss structure examples.
A. Kaveh, K. Biabani Hamedani,
Volume 10, Issue 4 (10-2020)
Abstract

In this paper, set theoretical variants of the artificial bee colony (ABC) and water evaporation optmization (WEO) algorithms are proposed. The set theoretical variants are designed based on a set theoretical framework in which the population of candidate solutions is divided into some number of smaller well-arranged sub-populations. The framework aims to improve the compromise between diversification and intensification of the search and makes it possible to design various variants of a P-metaheuristic. In order to verify the stability and robustness of the set theoretical framework, the proposed algorithms are applied to solve three different benchmark structural design optimization problems. The results show that the set theoretical framework improves the performance of the ABC and WEO algorithms, especially in terms of robustness and convergence characteristics.
A. Kaveh, K. Biabani Hamedani, M. Kamalinejad, A. Joudaki,
Volume 11, Issue 2 (5-2021)
Abstract

Jellyfish Search (JS) is a recently developed population-based metaheuristic inspired by the food-finding behavior of jellyfish in the ocean. The purpose of this paper is to propose a quantum-based Jellyfish Search algorithm, named Quantum JS (QJS), for solving structural optimization problems. Compared to the classical JS, three main improvements are made in the proposed QJS: (1) a quantum-based update rule is adopted to encourage the diversification in the search space, (2) a new boundary handling mechanism is used to avoid getting trapped in local optima, and (3) modifications of the time control mechanism are added to strike a better balance between global and local searches. The proposed QJS is applied to solve frequency-constrained large-scale cyclic symmetric dome optimization problems. To the best of our knowledge, this is the first time that JS is applied in frequency-constrained optimization problems. An efficient eigensolution method for free vibration analysis of rotationally repetitive structures is employed to perform structural analyses required in the optimization process. The efficient eigensolution method leads to a considerable saving in computational time as compared to the existing classical eigensolution method. Numerical results confirm that the proposed QJS considerably outperforms the classical JS and has superior or comparable performance to other state-of-the-art optimization algorithms. Moreover, it is shown that the present eigensolution method significantly reduces the required computational time of the optimization process compared to the classical eigensolution method.
A. Kaveh, K. Biabani Hamedani, M. Kamalinejad,
Volume 11, Issue 4 (11-2021)
Abstract

The arithmetic optimization algorithm (AOA) is a recently developed metaheuristic optimization algorithm that simulates the distribution characteristics of the four basic arithmetic operations (i.e., addition, subtraction, multiplication, and division) and has been successfully applied to solve some optimization problems. However, the AOA suffers from poor exploration and prematurely converges to non-optimal solutions, especially when dealing with multi-dimensional optimization problems. More recently, in order to overcome the shortcomings of the original AOA, an improved version of AOA, named IAOA, has been proposed and successfully applied to discrete structural optimization problems. Compared to the original AOA, two major improvements have been made in IAOA: (1) The original formulation of the AOA is modified to enhance the exploration and exploitation capabilities; (2) The IAOA requires fewer algorithm-specific parameters compared with the original AOA, which makes it easy to be implemented. In this paper, IAOA is applied to the optimal design of large-scale dome-like truss structures with multiple frequency constraints. To the best of our knowledge, this is the first time that IAOA is applied to structural optimization problems with frequency constraints. Three benchmark dome-shaped truss optimization problems with frequency constraints are investigated to demonstrate the efficiency and robustness of the IAOA. Experimental results indicate that IAOA significantly outperforms the original AOA and achieves results comparable or superior to other state-of-the-art algorithms.
A. Kaveh, M. Kamalinejad, K. Biabani Hamedani, H. Arzani,
Volume 12, Issue 2 (4-2022)
Abstract

As a novel strategy, Quantum-behaved particles use uncertainty law and a distinct formulation obtained from solving the time-independent Schrodinger differential equation in the delta-potential-well function to update the solution candidates’ positions. In this case, the local attractors as potential solutions between the best solution and the others are introduced to explore the solution space. Also,  the difference between the average and another solution is established as a new step size. In the present paper, the quantum teacher phase is introduced to improve the performance of the current version of the teacher phase of the Teaching-Learning-Based Optimization algorithm (TLBO) by using the formulation obtained from solving the time-independent Schrodinger equation predicting the probable positions of optimal solutions. The results show that QTLBO, an acronym for the Quantum Teaching- Learning- Based Optimization, improves the stability and robustness of the TLBO by defining the quantum teacher phase. The two circulant space trusses with multiple frequency constraints are chosen to verify the quality and performance of QTLBO. Comparing the results obtained from the proposed algorithm with those of the standard version of the TLBO algorithm and other literature methods shows that QTLBO increases the chance of finding a better solution besides improving the statistical criteria compared to the current TLBO.
 
F. Biabani, A. Razzazi, S. Shojaee, S. Hamzehei-Javaran,
Volume 12, Issue 3 (4-2022)
Abstract

Presently, the introduction of intelligent models to optimize structural problems has become an important issue in civil engineering and almost all other fields of engineering. Optimization models in artificial intelligence have enabled us to provide powerful and practical solutions to structural optimization problems. In this study, a novel method for optimizing structures as well as solving structure-related problems is presented. The main purpose of this paper is to present an algorithm that addresses the major drawbacks of commonly-used algorithms including the Grey Wolf Optimization Algorithm (GWO), the Gravitational Search Algorithm (GSA), and the Particle Swarm Optimization Algorithm (PSO), and at the same time benefits from a high convergence rate. Also, another advantage of the proposed CGPGC algorithm is its considerable flexibility to solve a variety of optimization problems. To this end, we were inspired by the GSA law of gravity, the GWO's top three search factors, the PSO algorithm in calculating speed, and the cellular machine theory in the realm of population segmentation. The use of cellular neighborhood reduces the likelihood of getting caught in the local optimal trap and increases the rate of convergence to the global optimal point. Achieving reasonable results in mathematical functions (CEC 2005) and spatial structures (with a large number of variables) in comparison with those from GWO, GSA, PSO, and some other common heuristic algorithms shows an enhancement in the performance of the introduced method compared to the other ones.
 
F. Biabani, A. A. Dehghani, S. Shojaee, S. Hamzehei-Javaran,
Volume 14, Issue 3 (6-2024)
Abstract

Optimization has become increasingly significant and applicable in resolving numerous engineering challenges, particularly in the structural engineering field. As computer science has advanced, various population-based optimization algorithms have been developed to address these challenges. These methods are favored by most researchers because of the difficulty of calculations in classical optimization methods and achieving ideal solutions in a shorter time in metaheuristic technique methods. Recently, there has been a growing interest in optimizing truss structures. This interest stems from the widespread utilization of truss structures, which are known for their uncomplicated design and quick analysis process. In this paper, the weight of the truss, the cross-sectional area of the members as discrete variables, and the coordinates of the truss nodes as continuous variables are optimized using the HGPG algorithm, which is a combination of three metaheuristic algorithms, including the Gravity Search Algorithm (GSA), Particle Swarm Optimization (PSO), and Gray Wolf Optimization (GWO). The presented formulation aims to improve the weaknesses of these methods while preserving their strengths. In this research, 15, 18, 25, and 47-member trusses were utilized to show the efficiency of the HGPG method, so the weight of these examples was optimized while their constraints such as stress limitations, displacement constraints, and Euler buckling were considered. The proposed HGPG algorithm operates in discrete and continuous modes to optimize the size and geometric configuration of truss structures, allowing for comprehensive structural optimization. The numerical results show the suitable performance of this process.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb