Search published articles


Showing 2 results for Farahani

F.r. Rofooei, A. Kaveh, F.m. Farahani,
Volume 1, Issue 3 (9-2011)
Abstract

Heavy economic losses and human casualties caused by destructive earthquakes around the world clearly show the need for a systematic approach for large scale damage detection of various types of existing structures. That could provide the proper means for the decision makers for any rehabilitation plans. The aim of this study is to present an innovative method for investigating the seismic vulnerability of the existing concrete structures with moment resisting frames (MRF). For this purpose, a number of 2-D structural models with varying number of bays and stories are designed based on the previous Iranian seismic design code, Standard 2800 (First Edition). The seismically–induced damages to these structural models are determined by performing extensive nonlinear dynamic analyses under a number of earthquake records. Using the IDARC program for dynamic analyses, the Park and Ang damage index is considered for damage evaluation of the structural models. A database is generated using the level of induced damages versus different parameters such as PGA, the ratio of number of stories to number of bays, the dynamic properties of the structures models such as natural frequencies and earthquakes. Finally, in order to estimate the vulnerability of any typical reinforced MRF concrete structures, a number of artificial neural networks are trained for estimation of the probable seismic damage index.
M. A. Roudak, M. A. Shayanfar, M. Farahani, S. Badiezadeh, R. Ardalan,
Volume 14, Issue 2 (2-2024)
Abstract

Genetic algorithm is a robust meta-heuristic algorithm inspired by the theory of natural selection to solve various optimization problems. This study presents a method with the purpose of promoting the exploration and exploitation of genetic algorithm. Improvement in exploration ability is made by adjusting the initial population and adding a group of fixed stations. This modification increases the diversity among the solution population, which enables the algorithm to escape from local optimum and to converge to the global optimum even in fewer generations. On the other hand, to enhance the exploitation ability, increasing the number of selected parents is suggested and a corresponding crossover technique has been presented. In the proposed technique, the number of parents to generate offspring is variable during the process and it could be potentially more than two. The effectiveness of the modifications in the proposed method has been verified by examining several benchmark functions and engineering design problems.
 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb