Search published articles


Showing 49 results for Structural Optimization

M. Shahrouzi, A. Salehi,
Volume 13, Issue 2 (4-2023)
Abstract

In most practical cases, structural design variables are linked to a discrete list of sections for optimal design. Cardinality of such a discrete search space is governed by the number of alternatives for each member group. The present work offers an adaptive strategy to detect more efficient alternatives and set aside redundant ones during optimization. In this regard, the difference between the lower and the upper bounds on such variables is gradually reduced by a procedure that adapts history of the selected alternatives in previous iterations. The propsed strategy is implemented on a hybrid paritcle swarm optimizer and imperialist competitive algorithm. The former is a basic swarm intelligent method while the later utilizes subpopulations in its search. Spatial and large-scale structures in various shapes are treated showing successive performance improvement. Variation of a diversity index and resulting band size are traced and discussed to declare behavior merits of the proposed adaptive band strategy.  
 
A. Kaveh, A. Zaerreza,
Volume 13, Issue 3 (7-2023)
Abstract

In this paper, three recently improved metaheuristic algorithms are utilized for the optimum design of the frame structures using the force method. These algorithms include enhanced colliding bodies optimization (ECBO), improved shuffled Jaya algorithm (IS-Jaya), and Vibrating particles system - statistical regeneration mechanism algorithm (VPS-SRM). The structures considered in this study have a lower degree of statical indeterminacy (DSI) than their degree of kinematical indeterminacy (DKI). Therefore, the force method is the most suitable analysis method for these structures. The robustness and performance of these methods are evaluated by the three design examples named 1-bay 10-story steel frame, 3-bay 15-story steel frame, and 3-bay 24-story steel frame.
 
S. Gholizadeh, C. Gheyratmand , N. Razavi,
Volume 13, Issue 3 (7-2023)
Abstract

The main objective of this study is to optimize reinforced concrete (RC) frames in the framework of performance-based design using metaheuristics. Three improved and efficient metaheuristics are employed in this work, namely, improved multi-verse (IMV), improved black hole (IBH) and modified newton metaheuristic algorithm (MNMA). These metaheuristic algorithms are applied for performance-based design optimization of 6- and 12-story planar RC frames. The seismic response of the structures is evaluated using pushover analysis during the optimization process. The obtained results show that the IBH outperforms the other algorithms.
 
A. Kaveh, S. Rezazadeh Ardebili,
Volume 13, Issue 3 (7-2023)
Abstract

This paper deals with the optimum design of the mixed structures that consists of two parts, a lower part made of concrete and an upper part made of steel. Current codes and available commercial software packages do not provide analytical solutions for such structural systems, especially if a decoupled analysis is performed where the lower part is excited by ground motion and its response of total accelerations is used for the upper part. Due to irregular damping ratios, mass and stiffness, dynamic response of each part of a mixed structure differs significantly. The present paper aims at comparing of the optimum design of these structures under the coupled and decoupled models. Toward that goal, the coupled and decoupled time history analyses are performed and the optimum design of the two methods are compared. The results of the two approach show that the cost of the decoupled analysis is higher than the cost of the coupled analysis and the design of the decoupled method may be uneconomical, because the interaction between the two upper and lower parts is neglected.
 
A. Kaveh, A. Zaerreza,
Volume 13, Issue 4 (10-2023)
Abstract

This paper presents the chaotic variants of the particle swarm optimization-statistical regeneration mechanism (PSO-SRM). The nine chaotic maps named Chebyshev, Circle, Iterative, Logistic, Piecewise, Sine, Singer, Sinusoidal, and Tent are used to increase the performance of the PSO-SRM. These maps are utilized instead of the random number, which defines the solution generation method. The robustness and performance of these methods are tested in the three steel frame design problems, including the 1-bay 10-story steel frame, 3-bay 15-story steel frame, and 3-bay 24-story steel frame. The optimization results reveal that the applied chaotic maps improve the performance of the PSO-SRM.
 
A. Yadbayza-Moghaddam, S. Gholizadeh,
Volume 14, Issue 1 (1-2024)
Abstract

The primary objective of this paper is to propose a novel technique for hybridizing various metaheuristic algorithms to optimize the size of discrete structures. To accomplish this goal, two well-known metaheuristic algorithms, particle swarm optimization (PSO) and enhanced colliding bodies optimization (ECBO) are hybridized to propose a new algorithm called hybrid PSO-ECBO (HPE) algorithm. The performance of the new HPE algorithm is investigated in solving the challenging structural optimization problems of discrete steel trusses and an improvement in results has been achieved. The numerical results demonstrate the superiority of the proposed HPE algorithm over the original versions of PSO, ECBO, and some other algorithms in the literature.
 
S. L. Seyedoskouei, Dr. R. Sojoudizadeh, Dr. R. Milanchian, Dr. H. Azizian,
Volume 14, Issue 3 (6-2024)
Abstract

The optimal design of structural systems represents a pivotal challenge, striking a balance between economic efficiency and safety. There has been a great challenge in balancing between the economic issues and safety factors of the structures over the past few decades; however, development of high-speed computing systems enables the experts to deal with higher computational efforts in designing structural systems. Recent advancements in computational methods have significantly improved our ability to address this challenge through sophisticated design schemes. The main purpose of this paper is to develop an intelligent design scheme for truss structures in which an optimization process is implemented into this scheme to help the process reach lower weights for the structures. For this purpose, the Artificial Rabbits Optimization (ARO) algorithm is utilized as one of the recently developed metaheuristic algorithms which mimics the foraging behaviour of the rabbits in nature. In order to reach better solutions, the improved version of this algorithm is proposed as I-ARO in which the well-known random initialization process is substituted by the Diagonal Linear Uniform (DLU) initialization procedure. For numerical investigations, 5 truss structures 10, 25, 52, 72, and 160 elements are considered in which stress and displacement constraints are determined by considering discrete design variables. By conducting 50 optimization runs for each truss structure, it can be concluded that the I-ARO algorithm is capable of reaching better solutions than the standard ARO algorithm which demonstrates the effects of DLU in enhancing this algorithm’s search behaviour.
 
F. Biabani, A. A. Dehghani, S. Shojaee, S. Hamzehei-Javaran,
Volume 14, Issue 3 (6-2024)
Abstract

Optimization has become increasingly significant and applicable in resolving numerous engineering challenges, particularly in the structural engineering field. As computer science has advanced, various population-based optimization algorithms have been developed to address these challenges. These methods are favored by most researchers because of the difficulty of calculations in classical optimization methods and achieving ideal solutions in a shorter time in metaheuristic technique methods. Recently, there has been a growing interest in optimizing truss structures. This interest stems from the widespread utilization of truss structures, which are known for their uncomplicated design and quick analysis process. In this paper, the weight of the truss, the cross-sectional area of the members as discrete variables, and the coordinates of the truss nodes as continuous variables are optimized using the HGPG algorithm, which is a combination of three metaheuristic algorithms, including the Gravity Search Algorithm (GSA), Particle Swarm Optimization (PSO), and Gray Wolf Optimization (GWO). The presented formulation aims to improve the weaknesses of these methods while preserving their strengths. In this research, 15, 18, 25, and 47-member trusses were utilized to show the efficiency of the HGPG method, so the weight of these examples was optimized while their constraints such as stress limitations, displacement constraints, and Euler buckling were considered. The proposed HGPG algorithm operates in discrete and continuous modes to optimize the size and geometric configuration of truss structures, allowing for comprehensive structural optimization. The numerical results show the suitable performance of this process.
S. Talatahari,
Volume 14, Issue 4 (10-2024)
Abstract

Structural optimization plays a critical role in improving the efficiency, cost-effectiveness, and sustainability of engineering designs. This paper presents a comparative study of single-objective and multi-objective optimization in the structural design process. Single-objective problems focus on optimizing just one objective, such as minimizing weight or cost, while other important aspects are treated as constraints like deflections and strength requirements. Multi-objective optimization addresses multiple conflicting objectives, such as balancing cost, with displacement treated as a secondary objective and strength requirements defined as constraints within the given limits. Both optimization approaches are carried out using Chaos Game Optimization (CGO). While single-objective optimization produces a definitive optimal solution that can be used directly in the final design, multi-objective optimization results in a set of trade-off solutions (Pareto front), requiring a decision-making process based on design codes and practical criteria to select the most appropriate design. Through a real-world case study, this research will assess the performance of both optimization strategies, providing insights into their suitability for modern structural engineering challenges.

Page 3 from 3     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb