Showing 24 results for Optimal Design
A. Kaveh, B. Mirzaei, A. Jafarvand,
Volume 3, Issue 4 (10-2013)
Abstract
The objective of this paper is to present an optimal design for single-layer barrel vault frames via improved magnetic charged system search (IMCSS) and open application programming interface (OAPI). The IMCSS algorithm is utilized as the optimization algorithm and the OAPI is used as an interface tool between analysis software and the programming language. In the proposed algorithm, magnetic charged system search (MCSS) and improved harmony search (IHS) are utilized to achieve a good convergence and good solutions especially in final iterations. The results confirm the efficiency of OAPI as a powerful interface tool in the analysis process of barrel vault structures and also the ability of IMCSS algorithm in fast convergence and achieving optimal results.
J. Jin, L.j. Li, J.n. He,
Volume 4, Issue 1 (3-2014)
Abstract
A quick group search optimizer (QGSO) is an intelligent optimization algorithm which has been applied in structural optimal design, including the hinged spatial structural system. The accuracy and convergence rate of QGSO are feasible to deal with a spatial structural system. In this paper, the QGSO algorithm optimization is adopted in seismic research of steel frames with semi-rigid connections which more accurately reflect the practical situation. The QGSO is combined with the constraint from the penalty coefficients and dynamic time-history analysis. The performance of the QGSO on seismic design has been tested on a two-bay five-layer steel frame in this paper. The result shows that, compared with the PSO algorithm, the QGSO algorithm has better performance in terms of convergence rate and the ability to escape from local optimums. Moreover, it is feasible and effective to apply the QGSO to the seismic optimal design of steel framework.
M. Mohebbi , A. Bagherkhani,
Volume 4, Issue 3 (9-2014)
Abstract
In the area of semi-active control of civil structures, Magneto-Rheological (MR) damper has been an efficient mechanism for reducing the seismic response of structures. In this paper, an effective method based on defining an optimization problem for designing MR dampers has been proposed. In the proposed method, the parameters of semi-active control system are determined so that the maximum response of structure is minimized. To solve the optimization problem, the Genetic algorithm (GA) has been utilized. The modified Bouc-Wen model has been used to represent the dynamic behavior of MR damper while to determine the input voltage at any time step, the clipped optimal control algorithm with LQR controller has been applied. To evaluate the performance of the proposed method, a ten-storey shear frame subjected to the El-Centro excitation and for two different kinds of objective functions, optimal MR dampers have been designed. Then the performance of optimal MR damper has been tested under different excitations. The results of the numerical simulations have shown the effectiveness of the proposed method in designing optimal MR dampers that have the capability of reducing the response of the structures up to a significant level. In addition, the effect of selecting a proper objective function to achieve the best performance of MR dampers in decreasing different responses of structure has been shown.
A. Kaveh , V.r. Mahdavi,
Volume 4, Issue 4 (11-2014)
Abstract
In this paper, optimal design of arch dams is performed under frequency limitations. Colliding Bodies Optimization (CBO), a recently developed meta-heuristic optimization method, which has been successfully applied to several structural problems, is revised and utilized for finding the best feasible shape of arch dams. The formulation of CBO is derived from one-dimensional collisions between bodies, where each agent solution is considered as the massed object or body. The design procedure aims to obtain minimum weight of arch dams subjected to natural frequencies, stability and geometrical limitations. Two arch dam examples from the literature are examined to verify the suitability of the design procedure and to demonstrate the effectiveness and robustness of the CBO in creating optimal design for arch dams. The results of the examples show that CBO is a powerful method for optimal design of arch dams.
A. Kaveh, P. Asadi,
Volume 6, Issue 1 (1-2016)
Abstract
Grillages are widely used in various structures. In this research, the Colliding Bodies Optimization (CBO) and Enhanced Colliding Bodies Optimization (ECBO) algorithms are used to obtain the optimum design of irregular grillage systems. The purpose of this research is to minimize the weight of the structure while satisfying the design constraints. The design variables are considered to be the cross-sectional properties of the beams and the design constraints are employed from LRFD-AISC. In addition, optimum design of grillages is performed for two cases: (i) without considering the warping effect, and (ii) with considering the warping effect. Also, several examples are presented to show the effect of different spacing and various boundary conditions. Finally, the results show that warping effect, beam spacing and boundary conditions have significant effects on the optimum design of grillages.
S. Kazemzadeh Azad, S. Kazemzadeh Azad, O. Hasançebi,
Volume 6, Issue 3 (9-2016)
Abstract
The big bang-big crunch (BB-BC) algorithm is a popular metaheuristic optimization technique proposed based on one of the theories for the evolution of the universe. The algorithm utilizes a two-phase search mechanism: big-bang phase and big-crunch phase. In the big-bang phase the concept of energy dissipation is considered to produce disorder and randomness in the candidate population while in the big-crunch phase the randomly created solutions are shrunk into a single point in the design space. In recent years, numerous studies have been conducted on application of the BB-BC algorithm in solving structural design optimization instances. The objective of this review study is to identify and summarize the latest promising applications of the BB-BC algorithm in optimal structural design. Different variants of the algorithm as well as attempts to reduce the total computational effort of the technique in structural optimization problems are covered and discussed. Furthermore, an empirical comparison is performed between the runtimes of three different variants of the algorithm. It is worth mentioning that the scope of this review is limited to the main applications of the BB-BC algorithm and does not cover the entire literature.
A. Kaveh, A. Zolghadr,
Volume 6, Issue 4 (10-2016)
Abstract
This paper presents a novel population-based meta-heuristic algorithm inspired by the game of tug of war. Utilizing a sport metaphor the algorithm, denoted as Tug of War Optimization (TWO), considers each candidate solution as a team participating in a series of rope pulling competitions. The teams exert pulling forces on each other based on the quality of the solutions they represent. The competing teams move to their new positions according to Newtonian laws of mechanics. Unlike many other meta-heuristic methods, the algorithm is formulated in such a way that considers the qualities of both of the interacting solutions. TWO is applicable to global optimization of discontinuous, multimodal, non-smooth, and non-convex functions. Viability of the proposed method is examined using some benchmark mathematical functions and engineering design problems. The numerical results indicate the efficiency of the proposed algorithm compared to some other methods available in literature.
S. Kazemzadeh Azad, S. Kazemzadeh Azad, O. Hasançebi,
Volume 6, Issue 4 (10-2016)
Abstract
Beginning in 2011 an international academic contest named as International Student Competition in Structural Optimization (ISCSO) has been organized by the authors to encourage undergraduate and graduate students to solve structural engineering optimization problems. During the past events on the one hand a unique platform is provided for a fair comparison of structural optimization algorithms; and on the other hand it is attempted to draw the attention of students to the interesting and joyful aspects of dealing with optimization problems. This year, after five online events successfully held with support and help of our advisory and scientific committee members from different universities all around the world, the authors decided to gather the test problems of the ISCSO in this technical report as an optimization test set. Beside the well -known traditional benchmark instances, the provided test set might also be used for further performance evaluation of future structural optimization algorithms.
A. Kaveh, S. Sabeti,
Volume 9, Issue 1 (1-2019)
Abstract
Structural optimization of offshore wind turbine structures has become an important issue in the past years due to the noticeable developments in offshore wind industry. However, considering the offshore wind turbines’ size and environment, this task is outstandingly difficult. To overcome this barrier, in this paper, a metaheuristic algorithm called Enhanced Colliding Bodies Optimization (ECBO) is utilized to investigate the optimal design of jacket supporting structures for offshore wind turbines when a number of structural constraints, including a frequency constraint, are considered. The algorithm is validated using a design example. The OC4 reference jacket, which has been widely referenced in offshore wind industry, is the considered design example in this paper. The whole steps of this research, including loading, analysis, design, and optimization of the structure, are coded in MATLAB. Both Ultimate Limit States (ULS) and frequency constraints are considered as design constraints in this paper. Huge weight reduction is observed during this optimization problem, indicating the efficiency of the ECBO algorithm and its application in the optimization of offshore wind turbine structures.
S. Delir, A. Foroughi-Asl, S. Talatahari,
Volume 9, Issue 2 (4-2019)
Abstract
Water distribution networks are one of the important and costly infrastructures of cities and many meta-heuristic algorithms in standard or hybrid forms were used for optimizing water distribution networks. These algorithms require a large amount of computational cost. Therefore, the converging speed of algorithms toward the optimization goal is as important as the goal itself. In this paper, a new method is developed by linking the charged system search algorithm and firefly algorithm for optimizing water distribution networks. For evaluating the proposed method, some popular benchmark examples are considered. Simulation results demonstrate the efficiency of the proposed algorithm compared to others.
M. Mohebbi, H. Dadkhah,
Volume 10, Issue 1 (1-2020)
Abstract
In this paper, a design method is proposed for base isolation system under blast loading that this method is based on transforming design problem into an optimization problem. Genetic algorithm has been employed to solve the optimization problem whereas base isolation system properties have been considered as design variables and a linear combination of base drift and inter-story drift has been defined as objective function. A sensitivity analysis has been also conducted to investigate the effect of base isolation system properties on the blast performance of isolated structure. For numerical simulation, base isolation system is designed using the proposed method for controlling the response of an eight-story nonlinear shear-type building frame under blast loading. It has been found from the results that base isolation system is an effective control system under blast loading that its performance is dependent on the base isolation system characteristics especially the base mass. The optimization results also show that base isolation system designed using the proposed method is a well-designed control system for mitigating the blast response of structure and the proposed design method can be considered as an effective design approach under blast loading.
A. Kaveh, K. Biabani Hamedani, F. Barzinpour,
Volume 10, Issue 2 (4-2020)
Abstract
Meta-heuristic algorithms are applied in optimization problems in a variety of fields, including engineering, economics, and computer science. In this paper, seven population-based meta-heuristic algorithms are employed for size and geometry optimization of truss structures. These algorithms consist of the Artificial Bee Colony algorithm, Cyclical Parthenogenesis Algorithm, Cuckoo Search algorithm, Teaching-Learning-Based Optimization algorithm, Vibrating Particles System algorithm, Water Evaporation Optimization, and a hybridized ABC-TLBO algorithm. The Taguchi method is employed to tune the parameters of the meta-heuristics. Optimization aims to minimize the weight of truss structures while satisfying some constraints on their natural frequencies. The capability and robustness of the algorithms is investigated through four well-known benchmark truss structure examples.
A. Kaveh, N. Khodadadi, S. Talatahari,
Volume 11, Issue 1 (1-2021)
Abstract
In this article, an Advanced Charged System Search (ACSS) algorithm is applied for the optimum design of steel structures. ACSS uses the idea of Opposition-based Learning and Levy flight to enhance the optimization abilities of the standard CSS. It also utilizes the information of the position of each charged particle in the subsequent search process to increase the convergence speed. The objective function is to find a minimum weight by choosing suitable sections subjected to strength and displacement requirements specified by the American Institute of Steel Construction (AISC) standard subject to the loads defined by Load Resistance Factor Design (LRFD). To show the performance of the ACSS, four stell structures with different number of elements are optimized. The results, efficiency, and accuracy of the ACSS algorithm are compared to other meta-heuristic algorithms. The results show the superiority of the ACSS compared to the other considered algorithms.
S. Sarjamei, M. S. Massoudi, M. Esfandi Sarafraz,
Volume 11, Issue 2 (5-2021)
Abstract
H. Safaeifar, M. Sheikhi Azqandi,
Volume 11, Issue 3 (8-2021)
Abstract
The impact damper is a passive method for controlling vibrations of dynamic systems. It is designed by placing one or several masses in a container, which is installed on the structure. Damping performance is affected by many parameters, such as the mass ratio of the primary structure, size, number, and material of the particles, friction and restitution coefficients of the particles and gap distance. Impact damper is effective, economical, and practical and its functionality can be further enhanced by an optimal design. In this paper, first, the mathematical modeling of a rigid impact damper used in free vibration reduction of a single degree of freedom (SDOF) system is performed. The results on this step are validated with those results of previous studies, and a good agreement is achieved. Next, the robust hybrid optimization method that is called Imperialist Competitive Ant Colony Optimization (ICACO) is introduced. After that, the damper function is optimized using ICACO, and the optimum values of the effective parameters for maximizing damping effectiveness are obtained. Comparing the results of the optimized and the basic designs shows that the optimization method is robust and the optimal results are practical. The optimum design of damper parameters using ICACO method can damp more than %94 of the system’s initial energy in a short time.
R. Babaei Semriomi, A. Keyhani,
Volume 12, Issue 2 (4-2022)
Abstract
This paper introduces a reliability-based multi-objective design method for spatial truss structures. A multi-objective optimization problem has been defined considering three conflicting objective functions including truss weight, nodal deflection, and failure probability of the entire truss structure with design variables of cross sectional area of the truss members. The failure probability of the entire truss system has been determined considering the truss structure as a series system. To this end, the uncertainties of the applied load and the resistance of the truss members have been accounted by generating a set of 50 random numbers. The limitations of members' allowable have been defined as constraints. To explain the methodology, a 25-bar benchmark spatial truss has been considered as the case study structure and has been optimally designed using the game theory concept and genetic algorithm (GA). The results show effectiveness and simplicity of the proposed method which can provide Pareto optimal solution. These optimal solutions can provide both safety and reliability for the truss structure.
A. Kaveh, A. Zaerreza, J. Zaerreza,
Volume 13, Issue 2 (4-2023)
Abstract
Vibrating particles system (VPS) is a swarm intelligence-based optimizer inspired by free vibration with a single degree of freedom systems. VPS is one of the well-known algorithms in structural optimization problems. However, its performance can be improved to find a better solution. This study introduces an improved version of the VPS using the statistical regeneration mechanism for the optimal design of the structures with discrete variables. The improved version is named VPS-SRM, and its efficiency is tested in the three real-size optimization problems. The optimization results reveal the capability and robustness of the VPS-SRM for the optimal design of the structures with discrete sizing variables.
G. Sedghi, S. Gholizadeh, S. Tariverdilo ,
Volume 13, Issue 4 (10-2023)
Abstract
In this paper an enhanced ant colony optimization algorithm with a direct constraints handling strategy is proposed for the optimization of reinforced concrete frames. The construction cost of reinforced concrete frames is considered as the objective function, which should be minimized subject to geometrical and behavioral strength constraints. For this purpose, a new probabilistic function is added to the ant colony optimization algorithm to directly satisfy the geometrical constraints. Furthermore, the position of an ant in each iteration is updated if a better solution is found in terms of objective value and behavioral strength constraints satisfaction. Five benchmark design examples of planar reinforced concrete frames are presented to illustrate the efficiency of the proposed algorithm.
V. Goodarzimehr, F. Salajegheh,
Volume 14, Issue 1 (1-2024)
Abstract
The analysis and design of high-rise structures is one of the challenges faced by researchers and engineers due to their nonlinear behavior and large displacements. The moment frame system is one of the resistant lateral load-bearing systems that are used to solve this problem and control the displacements in these structures. However, this type of structural system increases the construction costs of the project. Therefore, it is necessary to develop a new method that can optimize the weight of these structures. In this work, the weight of these significant structures is optimized by using one of the latest metaheuristic algorithms called special relativity search. The special relativity search algorithm is mainly developed for the optimization of continuous unconstrained problems. Therefore, a penalty function is used to prevent violence of the constraints of the problem, which are tension, displacement, and drift. Also, using an innovative technique to transform the discrete problem into a continuous one, the optimal design is carried out. To prove the applicability of the new method, three different problems are optimized, including an eight-story one-span, a fifteen-story three-span bending frame, and a twenty-four-story three-span moment frame. The weight of the structure is the objective function, which should be minimized to the lowest possible value without violating the constraints of the problem. The calculation of stress and displacements of the structure is done based on the regulations of AISC-LRFD requirements. To validate, the results of the proposed algorithm are compared with other advanced metaheuristic methods.
B. Ahmadi-Nedushan, A. M. Almaleeh,
Volume 14, Issue 4 (10-2024)
Abstract
This study uses an elitist Genetic Algorithm (GA) to optimize material costs in one-way reinforced concrete slabs, adhering to ACI 318-19. A sensitivity analysis demonstrated the critical role of elitism in GA performance. Without elitism, the GA consistently failed to reach the target objective, with success rates often nearing zero across various crossover fractions. Incorporating elitism dramatically increased success rates, highlighting the importance of preserving high-performing individuals. With an optimal configuration of 0.3 crossover fraction and 0.45 elite percentage, a 92% success rate was achieved, finding a cost of 24.91 in 46 of 50 runs for a simply supported slab. This optimized design, compared to designs based on ACI 318-99 and ACI 318-08, yielded material cost savings of between 5.8% to 8.6% for simply supported, one-end continuous, both-ends continuous, and cantilevered slabs. The influence of slab dimensions on cost was evaluated across 64 scenarios, varying slab lengths from 5 to 20 feet for each support condition. Resulting cost versus slab length diagrams illustrate the economic benefits of GA optimization.