B. Ahmadi-Nedushan, A. M. Almaleeh,
Volume 14, Issue 4 (10-2024)
Abstract
This study uses an elitist Genetic Algorithm (GA) to optimize material costs in one-way reinforced concrete slabs, adhering to ACI 318-19. A sensitivity analysis demonstrated the critical role of elitism in GA performance. Without elitism, the GA consistently failed to reach the target objective, with success rates often nearing zero across various crossover fractions. Incorporating elitism dramatically increased success rates, highlighting the importance of preserving high-performing individuals. With an optimal configuration of 0.3 crossover fraction and 0.45 elite percentage, a 92% success rate was achieved, finding a cost of 24.91 in 46 of 50 runs for a simply supported slab. This optimized design, compared to designs based on ACI 318-99 and ACI 318-08, yielded material cost savings of between 5.8% to 8.6% for simply supported, one-end continuous, both-ends continuous, and cantilevered slabs. The influence of slab dimensions on cost was evaluated across 64 scenarios, varying slab lengths from 5 to 20 feet for each support condition. Resulting cost versus slab length diagrams illustrate the economic benefits of GA optimization.
A. Sheikhalishahi, B. Ahmadi-Nedushan,
Volume 15, Issue 4 (11-2025)
Abstract
This study presents a cost optimization approach for simply supported one-way ribbed slabs, with the primary objective of minimizing concrete and reinforcement costs. A Genetic Algorithm (GA), implemented in MATLAB, is utilized to address this optimization problem. The optimization model incorporates seven discrete design variables: rib dimensions (spacing, bottom/top width, and height), topping slab thickness, flexural reinforcement diameter, and concrete compressive strength. For validation, an initial optimization based on ACI 318-08 with six variables demonstrated a 3% cost reduction compared to established algorithms. To ensure practical relevance, subsequent optimizations incorporated actual market conditions utilizing the 2025 Iranian Building Construction Price List. Transitioning to ACI 318-19 resulted in a 10% increase in optimal cost relative to ACI 318-08, primarily due to stricter shear strength provisions. To mitigate this increase and enhance design efficiency, concrete compressive strength was introduced as a seventh design variable. This expanded optimization was evaluated across spans ranging from 5 to 8 meters, yielding a further 4.4% cost reduction for a 6-meter span. Conclusively, the results demonstrate that the strategic application of higher-strength concrete, informed by real-world market prices, significantly reduces the overall cost of one-way ribbed slab construction.