Showing 11 results for Bridge
M. H. Makiabadi, A. Baghlani, H. Rahnema , M. A. Hadianfard,
Volume 3, Issue 3 (9-2013)
Abstract
In this study, teaching-learning-based optimization (TLBO) algorithm is employed for the first time for optimization of real world truss bridges. The objective function considered is the weight of the structure subjected to design constraints including internal stress within bar elements and serviceability (deflection). Two examples demonstrate the effectiveness of TLBO algorithm in optimization of such structures. Various design groups have been considered for each problem and the results are compared. Both tensile and compressive stresses are taken into account. The results show that TLBO has a great intrinsic capability in problems involving nonlinear design criteria.
M. A. Shayanfar, A. Kaveh, O. Eghlidos , B. Mirzaei,
Volume 6, Issue 2 (6-2016)
Abstract
In this paper, a method is presented for damage detection of bridges using the Enhanced Colliding Bodies Optimization (ECBO) utilizing time-domain responses. The finite element modeling of the structure is based on the equation of motion under the moving load, and the flexural stiffness of the structure is determined by the acceleration responses obtained via sensors placed in different places. Damage detection problem presented in this research is an inverse problem, which is optimized by the ECBO algorithm, and the damages in the structures are fully detected. Furthermore, for simulating the real situation, the effect of measured noises is considered on the structure, to obtain more accurate results.
M. Venkata Rao, P. Rama Mohan Rao,
Volume 6, Issue 4 (10-2016)
Abstract
In this paper, two different data driven models, genetic programming (GP) and multivariate adoptive regression splines (MARS), have been adopted to create the models for prediction of bridge risk score. Input parameters of bridge risks consists of safe risk rating (SRR), functional risk rating (FRR), sustainability risk rating (SUR), environmental risk rating (ERR) and target output. The total dataset contains 66 bridges data in which 70% of dataset is taken as training and the remaining 30% is considered for testing dataset. The accuracy of the models are determined from the coefficient of determination (R2). If the R2 the testing model is close to the R2 value of the training model, that particular model is to be consider as robust model. The modeling mechanisms and performance is quite different for both the methods hence comparative study is carried out. Thus concluded robust models performance based on the R2 value, is checked with mathematical statistical equations. In this study both models were performed, examined and compared the results with mathematical methods successfully. From this work, it is found that both the proposed methods have good capability in predestining the results. Finally, the results reveals that genetic Programming is marginally outperforms over the MARS technique.
H. Fazli, A. Pakbaz,
Volume 8, Issue 4 (10-2018)
Abstract
In this paper an optimization framework is presented for automated performance-based seismic design of bridges consisting of multi-column RC pier substructures. The beneficial effects of fusing components on seismic performance of the quasi-isolated system is duly addressed in analysis and design. The proposed method is based on a two-step structural analysis consisting of a linear modal dynamic demand analysis and a nonlinear static capacity evaluation of the entire bridge structure. Results indicate that the proposed optimization method is capable of producing cost-effective design solutions combining the fusing behavior of bearings and yielding mechanism of piers. The optimal designs obtained from models addressing the performance of fusing components are far more efficient than those that do not take care of quasi-isolation behavior.
R. Ghiamat, M. Madhkhan, T. Bakhshpoori,
Volume 9, Issue 4 (9-2019)
Abstract
Bridges constitute an expensive segment of construction projects; the optimization of their designs will affect their high cost. Segmental precast concrete bridges are one of the most commonly serviced bridges built for mid and long spans. Genetic algorithm is one of the most widely applied meta-heuristic algorithms due to its ability in optimizing cost. Next to providing cost optimization of these bridge types, the effects of each one of the main three selections, crossover and mutation operators are assessed, and the best operator is determined through the Taguchi experimental design. To validate the functionality of this algorithm, a bridge constructed in the city of Isfahan, Iran (completed in 2017) is optimized, a total of 13% reduction in cost and weight of its superstructure is evident. The efficiency of applying the Taguchi method in determining the type of operators of the genetic algorithm is proved.
F. Rahmani, R. Kamgar, R. Rahgozar,
Volume 10, Issue 2 (4-2020)
Abstract
The purpose of this study is to evaluate the long-term vertical deformations of segmented pre-tensioned concrete bridges by a new approach. It provides a practical and reliable method for calculating the amount of long-term deformation based on creep and shrinkage in segmented prestress bridges. There are various relationships for estimating the creep and shrinkage of concrete. The analytical results of existing models can be very different, and the results are not reliable. In this paper, the different existing relationships are written in MATLAB software. After calculation, the values of the creep and shrinkage are stored. Then a sample bridge is simulated in the CSI-Bridge software, and different values of creep and shrinkage are allocated separately. Therefore, the data are analyzed, and its maximum deformation value is extracted at a critical span (Dv-max). Assigning different amount of creep and shrinkage to the model results in different values of Dv-max. In the next step, all Dv-max values resulting from the change in creep and shrinkage contents should be re-introduced to MATLAB code to perform the calculation of the failure curve, and extract the corresponding Dv-max values at 95% probability. In a new approach, fragility curves are used to obtain the corresponding creep and shrinkage values corresponding to the desired probability percentage. Thus, instead of simulating several models, only one model is simulated. The results of the analysis of a bridge sample in this study indicate acceptable accuracy of the proposed solution for the 95% probability.
A. H. Salarnia, M. R. Ghasemi,
Volume 11, Issue 3 (8-2021)
Abstract
Pedestrian bridge is a structure constructed to maintain the safety of citizens in crowded and high-traffic areas. With the expansion of cities and the increase in population, the construction of bridges is necessary for easier and faster transportation, as well as the safety of pedestrians and vehicles. In this article, it is decided to consider the most economical cross-sections for these bridges according to the design regulations and codes of Practice in order to achieve the minimum weight, which will ultimately reduce the cost of construction and production and the usage of less resources. For this purpose, new GSS-PSO algorithm has been used and its results have been compared with GA and PSO algorithms, by the means of which an enhancement of PSO algorithm is seen. This enhancement on the conventional PSO technique reduces the search space more desirably and swiftly to a space close to the global optimum point. This algorithm has been implemented with MATLAB mathematical software and has been integrated with SAP2000v22 structural design software for analysis and optimum design under resistance and displacement constraints. The final results of the analyses are compared with an already designed and implemented infrastructure. In addition to a bridge optimization, a bench-mark frame optimization was also used in order for a better comparison between this algorithm and the other ones.
R. Javanmardi , B. Ahmadi-Nedushan,
Volume 11, Issue 3 (8-2021)
Abstract
In this research, the optimization problem of the steel-concrete composite I-girder bridges is investigated. The optimization process is performed using the
pattern search algorithm, and a parallel processing-based approach is introduced to improve the performance of this algorithm. In addition, using the open application programming interface (OAPI), the SM toolbox is developed. In this toolbox, the OAPI commands are implemented as MATLAB functions. The design variables represent the number and dimension of the longitudinal beam and the thickness of the concrete slab. The constraints of this problem are presented in three steps. The first step includes the constraints on the web-plate and flange-plate proportion limits and those on the operating conditions. The second step consists of considering strength constraints, while the concrete slab is not yet hardened. In the third step, strength and deflection constraints are considered when the concrete slab is
hardened. The AASHTO LRFD code (2007) for steel beam design and AASHTO LRFD (2014) for concrete slab design are used. The numerical examples of a sloping bridge with a skew angle are presented. Results show that active constraints are those on the operating conditions and component strength and that in terms of CPU time, a 19.6% improvement is achieved using parallel processing.
A. Kaveh, L. Mottaghi, A. Izadifard,
Volume 12, Issue 1 (1-2022)
Abstract
In this paper the parametric study is carried out to investigate the effect of number of cells in optimal cost of the non-prismatic reinforced concrete (RC) box girder bridges. The variables are geometry of cross section, tapered length, concrete strength and reinforcement of the box girders and slabs that are obtained using ECBO metaheuristic algorithm. The design is based on AASHTO standard specification. The constraints are the bending and shear strength, geometric limitations and superstructure deflection. The link of CSiBridge and MATLAB software are used for the optimization process. The methodology carried out for two-cell, three-cell and four-cell box girder bridges. The results show that the total cost of the concrete, bars and formwork for two-cell box girder is less than those of the three- and four-cell box girder bridges.
V. Nzarpour, S. Gholizadeh,
Volume 13, Issue 1 (1-2023)
Abstract
Design optimization of cable-stayed bridges is a challenging optimization problem because a large number of variables is usually involved in the optimization process. For these structures the design variables are cross-sectional areas of the cables. In this study, an efficient metaheuristic algorithm namely, momentum search algorithm (MSA) is used to optimize the design of cable-stayed bridges. The MSA is inspired by the Physics and its superiority over many metaheuristics has been demonstrated in tackling several standard benchmark test functions. In the current work, the performance of MSA is compared with that of two other metaheuristics and it is shown that the MSA is an efficient algorithm to tackle the optimization problem of cable-stayed bridges.
L. Mottaghi, A. Kaveh, R. A. Izadifard,
Volume 13, Issue 1 (1-2023)
Abstract
This paper presents a computational framework for optimal design of non-prismatic reinforced concrete box girder bridges. The variables include the geometry of the cross section, tapered length, concrete strength and reinforcement of box girders and slabs. These are obtained by the enhanced colliding bodies optimization algorithm to optimizing the cost and again CO2 emission. Loading and design is based on the AASHTO standard specification. The methodology is illustrated by a three-span continuous bridge. The trade-off between optimal cost and CO2 emission in this type of bridge indicates that the difference of costs, as well as CO2 emissions in the solution with both objectives is less than 1%. However, the optimal variables in the cost objective are different from the variables of CO2 emission objective.