Showing 2 results for Steel Moment Frame.
M. Danesh, S. Gholizadeh, C. Gheyratmand,
Volume 9, Issue 3 (6-2019)
Abstract
The main aim of the present study is to optimize steel moment frames in the framework of performance-based design and to assess the seismic collapse capacity of the optimal structures. In the first phase of this study, four well-known metaheuristic algorithms are employed to achieve the optimization task. In the second phase, the seismic collapse safety of the obtained optimal designs is evaluated by conducting incremental dynamic analysis and generating fragility curves. Three illustrative examples including 3-, 6-, and 12-story steel moment frames are presented. The numerical results demonstrate that all the performance-based optimal designs obtained by the metahuristic algorithms are of acceptable collapse margin ratio.
M. Nabati , S. Gholizadeh,
Volume 13, Issue 2 (4-2023)
Abstract
The purpose of the current study is to design steel moment resisting frames for optimal weight in the context of performance-based design. The performance-based design optimization of steel moment frames is a highly nonlinear and complex optimization problem having many local optima. Therefore, an efficient algorithm should be used to deal with this class of structural optimization problems. In the present study, a modified Newton metaheuristic algorithm (MNMA) is proposed for the solution of the optimization problem. In fact, MNMA is the improved version of the original Newton metaheuristic algorithm (NMA), which is a multi-stage optimization technique in which an initial population is generated at each stage based on the results of the previous stages. Two illustrative examples of 5-, and 10-story steel moment frames are presented and a number of independent optimization runs are achieved by NMA and MNMA. The numerical results demonstrate the better performance of the proposed MNMA compared to the NMA in solving the performance-based optimization problem of steel moment frames.