Torkzadeh P, Goodarzi Y, Salajegheh E. A TWO-STAGE DAMAGE DETECTION METHOD FOR LARGE-SCALE STRUCTURES BY KINETIC AND MODAL STRAIN ENERGIES USING HEURISTIC PARTICLE SWARM OPTIMIZATION. IJOCE 2013; 3 (3) :465-482
URL:
http://ijoce.iust.ac.ir/article-1-144-en.html
Abstract: (19641 Views)
In this study, an approach for damage detection of large-scale structures is developed by employing kinetic and modal strain energies and also Heuristic Particle Swarm Optimization (HPSO) algorithm. Kinetic strain energy is employed to determine the location of structural damages. After determining the suspected damage locations, the severity of damages is obtained based on variations of modal strain energy between the analytical models and the responses measured in damaged models using time history dynamic analysis data. In this paper, damages are modeled as a reduction of elasticity modulus of structural elements. The detection of structural damages is formulated as an unconstrained optimization problem that is solved by HPSO algorithm. To evaluate the performance of the proposed method, the results are compared with those provided in previous studies. To demonstrate the ability of this method for detection of multiple structural damages, different types of damage scenarios are considered. The results show that the proposed method can detect the exact locations and the severity of damages with a high accuracy in large-scale structures.
Type of Study:
Research |
Subject:
Optimal design Received: 2013/07/29 | Accepted: 2013/07/29 | Published: 2013/07/29