دوره 7، شماره 3 - ( 4-1396 )                   جلد 7 شماره 3 صفحات 382-367 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Feizbakhsh M, Khatibinia M. A COMPARATIVE STUDY OF TRADITIONAL AND INTELLIGENCE SOFT COMPUTING METHODS FOR PREDICTING COMPRESSIVE STRENGTH OF SELF – COMPACTING CONCRETES. IJOCE 2017; 7 (3) :367-382
URL: http://ijoce.iust.ac.ir/article-1-303-fa.html
A COMPARATIVE STUDY OF TRADITIONAL AND INTELLIGENCE SOFT COMPUTING METHODS FOR PREDICTING COMPRESSIVE STRENGTH OF SELF – COMPACTING CONCRETES. عنوان نشریه. 1396; 7 (3) :367-382

URL: http://ijoce.iust.ac.ir/article-1-303-fa.html


چکیده:   (21694 مشاهده)

This study investigates the prediction model of compressive strength of self–compacting concrete (SCC) by utilizing soft computing techniques. The techniques consist of adaptive neuro–based fuzzy inference system (ANFIS), artificial neural network (ANN) and the hybrid of particle swarm optimization with passive congregation (PSOPC) and ANFIS called PSOPC–ANFIS. Their performances are comparatively evaluated in order to find the best prediction model. In this study, SCC mixtures containing different percentage of nano SiO2 (NS), nano–TiO2 (NT), nano–Al2O3 (NA), also binary and ternary combining of these nanoparticles are selected. The results indicate that the PSOPC–ANFIS approach in comparison with the ANFIS and ANN techniques obtains an improvement in term of generalization and predictive accuracy. Although, the ANFIS and ANN techniques are a suitable model for this purpose, PSO integrated with the ANFIS is a flexible and accurate method due tothe stronger global search ability of the PSOPC algorithm.

متن کامل [PDF 906 kb]   (5715 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Optimal design
دریافت: 1395/12/8 | پذیرش: 1395/12/8 | انتشار: 1395/12/8

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb